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IN – Invited Talk 
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Tuesday, July 25    
 

8:30 AM 9.10 AM  
Organometallic Chemistry as the Driver For Earth Abundant Metal 

Catalysis Directed Toward Organic 
Synthesis 

 PL 2 

9.10 AM 9.40 AM Cooperative catalysis by transition metal germylene complexes IN 2 

9.40 AM 10.00 AM Non-noble metal-based transformations of (hetero)arenes ST 1 

10.00 
AM 10.20 AM Solvent-free Birch Reductions and Benzene C‒H Activation/C‒C 

Coupling mediated by a Room-Temperature Stable Electride (RoSE) ST 2 
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AM 10.40 AM AM Coffee Break Day 1 

10.40AM 11.10 AM Development of New Nitrogen Ligands for Pd-Catalyzed C–H 
Functionalization IN 3 

11.10AM 11.30 AM Mechanochemical Synthesis of Organometallic Compounds ST 3 

11.30 
AM 11.50 AM New Catalytic Explorations on Alkali (Earth) Metal Complexes ST 4 

11.50 
AM 12.20 PM Recent Adventures in Catalysis and Beyond IN 4 

12.20 
PM 1.40 PM IAB Meeting 

12.20 
PM 1.40 PM Lunch Day 1 

1.40 PM 2.10 PM Tailoring Sodium Organometallic Reagents For Arene Functionalisation IN 5 

2.10 PM 2.30PM Rational Design of Dual GO LDHA inhibitors for PH ST 5 

2.30 PM 2.35 PM Investigation of N-Heterocyclic Carbene Aryl Ligands for the Undirected 
Borylation of Secondary Alkyl C–H Bonds FL 1 

2.35 PM 2.40PM  Carbones with its Elusive Bonding Description and Broad Implication 
Complementary to NHC-Carbenes FL 2 

2.40 PM 2.45 PM Recent Advancement in Gold Redox Chemistry: New Transformations 
and Asymmetric Catalysis FL 3 

2.45 PM  2.50 PM Umpolung Reductive Functionalization of Amides via a Tandem 
Hydrosilylation/ Photocatalytic Strategy FL 4 

2.50 PM 2.55PM Planar Chiral Rhodium Complexes for Enantioselective Catalysis FL 5 

2.55 PM  3.25 PM One- and Two-electron Bismuth Redox Catalysis IN 6 

3.25 PM 5.00 PM Tuesday Poster Session 

5.00 PM 5.30PM Data Science as an Enabling Tool For Asymmetric Catalysis IN 7 

5.30 PM 5.50PM  Multicomponent Coupling Strategies via Iron Azametallacyclobutene 
Complexes ST 6 

5.50 PM 6.30 PM C-C Bond Nitrogenation  PL 3 
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Wednesday, July 26  
 

8:30 AM 9.10 AM  Interplay between Solvents and Modular Chirality-Switchable 
Macromolecular Catalysts in Asymmetric Catalysis  PL 4 

9.10 AM 9.40 AM Exploiting Ancillary Ligation To Enable Nickel-Catalyzed C−O Cross-
Couplings of Aryl Electrophiles with Aliphatic Alcohols and Phenols IN 8 

9.40 AM 10.00 AM Copper-Catalyzed Aminofunctionalization of Alkenes and Dienes ST 7 

10.00 
AM 10.20 AM A Process Chemistry Perspective on Transitioning from Palladium to 

Nickel Catalysis for C-B and C-C Bond Formations ST 8 

10.20 
AM 10.40 AM AM Coffee Break Day 2 

10.40AM 11.10 AM Leveraging Ligand Fluxionality in Organonickel Catalysis IN 9 

11.10AM 11.30 AM Catalytic Chemoselective Enolate Formation of Carboxylic Acids ST 9 

11.30 
AM 12.20 PM OMCOS Award: New Directions in Nickel-Catalyzed Cross Coupling  PL 5 

12.30 
PM 04.30 PM Vancouver Harbour Cruise 
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Thursday, July 27 
  

8:30 AM 9.10 AM  Accelerating Advances in Catalysis – Concepts, Insights, Strategies  PL 6 

9.10 AM 9.40 AM A Cooperative Photoredox/ Cobalt/Brønsted Acid Catalysis IN 10 

9.40 AM 10.00 AM New Tools in Organopalladium Catalysis: Pd(0) Precatalysts and 
Quantitative Reactivity Models ST 10 

10.00 
AM 10.20 AM Catalytic Enantioselective Redox-Neutral Processes for Efficient 

Chemical Synthesis ST 11 

10.20 
AM 10.40 AM AM Coffee Break Day 3 

10.40AM 11.10 AM New Developments in Ni-Catalyzed Transnitrilation IN 11 

11.10AM 11.30 AM Spirobipyridine Ligand for Remote Steric Control in Iridium-Catalyzed 
C–H Borylation of Arenes ST 12 

11.30 
AM 11.50 AM Enantioselective Desymmetrization of a Versatile Cyclobutene Scaffold 

via Dual-Catalyzed Photoredox Cross-Coupling ST 13 

11.50 
AM 12.20 PM Using Genetic Code Expansion to Access Artificial Metalloenzymes IN 12 

12.20 
PM 1.40 PM Lunch Day 3 

1.40 PM 2.10 PM From the Design of Original Reagents to their Applications:  A Highway 
to Fluorinated Scaffolds IN 13 

2.10 PM 2.30PM Establishment of a High-Throughput Experimentation Culture for 
Process Chemistry at Sanofi ST 14 

2.30 PM 2.35 PM Strategic Activation of Organoboron Compounds for the Creation of 
Chemical Space with Complexity FL 6 

2.35 PM 2.40PM  Synthesis of SGLT2 Inhibitors by Means of Fukuyama Coupling 
Reaction FL 7 

2.40 PM 2.45 PM Automatic peak assignment and feedback-controlled synthesis of 
complex one-pot multistep Suzuki-Miyaura couplings FL 8 

2.45 PM  2.50 PM Ring Opening of Borylated Cyclopropanes: Beyond 1,2-Metalate 
Rearrangement FL 9 

2.50 PM 2.55PM Synthetic possibilities of multifunctional nucleophiles in homogeneous 
catalytic carbonylation reactions FL 10 

2.55 PM  3.25 PM P(III)-Directed C–H Activation IN 14 

3.25 PM 5.00 PM Thursday Poster Session 

5.00 PM 5.30PM Organometallic Catalysis under Visible Light IN 15 

5.30 PM 5.50PM  Asymmetric Rh Diene Catalysis under Liquid and Solid Confinement - 
When Polarity, Domain Size and Flexibility Matter ST 15 

5.50 PM 6.30 PM Alternative Energy Drivers in Palladium Catalyzed Coupling Reactions  PL 7 

7.30 PM 9.30 PM Conference Dinner 
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Friday, July 28  

8:30 AM 9.00 AM  Enone as a Process Aid for the Highly Efficient Synthesis of the Age-old 
Karstedt’s Catalyst IN 16 

9.00 AM 9.20 AM 
New NHC- and Imidazole- Functionalized Carbazole Dyes for Visible-
Light Organic- and Solar Fuels- Photoreactions Over Homogeneous- 

and Heterogeneous Photocatalysts  
ST 16 

9.20 AM 9.40 AM Homogeneous and Heterogeneous Catalysts for Alkene Isomerization 
and Hydrosilylation ST 17 

9.40 AM 10.00 AM Designing New Synthetic Concepts for Imparting Molecular Complexity 
with C-1 Sources ST 18 

10.00 
AM 10.10 AM Poster Awards 

10.10 
AM 10.20 AM Welcome to OMCOS XXII 

10.20 
AM 10.40 AM AM Coffee Break Day 4 

10.40 
AM 11.10 AM N-Heterocyclic Carbenes as Ligands for Molecules and Materials IN 17 

11.10 
AM 11.30 AM Enantioselective C-H Arylation Based on Umpoled Indoles ST 19 

11.30 
AM 11.50 AM Transition Metal Catalyzed C-C Bond Activation of Strained Systems: A 

Useful Strategy in Organic Synthesis ST 20 

11.50 
AM 12.30 PM Translational Science: The Chemistry-Biology-Medicine Continuum  PL 8 

12.30 
PM 12.40 PM Closing Ceremony 
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PLENARY, INVITED SPEAKER AND ORAL PRESENTATIONS 

IN 1 

 
Development and Application of Electrochemical and Photochemical 

Capabilities in the Pharmaceutical Industry 
 

Dan Lehnherr*a 
aProcess Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United 

States. 
Email: dan.lehnherr@merck.com 

 

Electrochemistry and photoredox catalysis have rapidly gained importance in organic synthesis 
enabling new and different bond disconnections, with the potential to streamline synthesis and/or 
enable access to new regions of chemical space.1 My presentation will highlight applications of 
photochemistry and electrochemistry to solve challenges in the pharmaceutical industry. These will 
include recent2–5 and ongoing work related to reaction discovery, mechanistic studies, and new 
capabilities to efficiently explore these chemistries from milligram scale to kilogram-scale. 
 

 
References 
[1] Tay, N. E. S.; Lehnherr, D.; Rovis, T. Photons or Electrons? A Critical Comparison of 
Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem. Rev. 2022, 122, 2487–
2649. 
[2] Bottecchia, C.; Lehnherr, D.; Lévesque, F.; Reibarkh, M.; Ji, Y.; Rodrigues, V. L.; Wang, H.; Lam, 
Y.-h.; P. Vickery, T.; Armstrong, B. M.; Mattern, K. A.; Stone, K.; Wismer, M. K.; Singh, A. N.; 
Regalado, E. L.; Maloney, K. M.; Strotman, N. A. Kilo-Scale Electrochemical Oxidation of a Thioether 
to a Sulfone: A Workflow for Scaling Up Electrosynthesis. Org. Process Res. Dev. 2022, 26, 2423–
2437. 
[3] Efficient Aliphatic Hydrogen-Isotope Exchange with Tritium Gas through the Merger of Photoredox 
and Hydrogenation Catalysts H. Yang, Z. Huang, D. Lehnherr, Y.-h. Lam, S. Ren, N. A. Strotman. J. 
Am. Chem. Soc. 2022, 144, 5010–5022. 
[4] Manufacturing Process Development for Belzutifan, Part 2: A Continuous Flow Visible Light-
Induced Benzylic Bromination. Bottecchia, C.; Lévesque, F.; McMullen, J. P.; Ji, Y.; Reibarkh, M.; 
Peng, F.; Tan, L.; Spencer, G.; Nappi, J.; Lehnherr, D.; Narsimhan, K.; Wismer, M. K.; Chen, L.; Lin, 
Y.; Dalby, S. M. Org. Proc. Res. Dev. 2022, 26, 516–524. 
[5] Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a 
Standardized Microscale Reactor. Rein, J.; Annand, J. R. Wismer, M. K. Fu, J.; Siu, J. C.; Klapars, A.; 
Strotman, N. A.; Kalyani, D.; Lehnherr, D.; Lin, S. ACS Cent. Sci. 2021, 7, 1347–1355. 
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PL 1 

 
Choose Your Own Adventures in Metal-Hydride Catalysis 

 
Vy M Dong*a 

aUniversity of California at Irvine, Irvine, CA, USA 
Email: dongv@uci.edu 

 

Metal hydrides promote a wide-range of organic transformations that include both C-C bond making 
and C-C bond breaking processes. This lecture will highlight the development of transition-metal 
catalysts for use in enantioselective hydrofunctionalizations (e.g., hydroacylation, hydroamination, 
and hydrothiolation). In addition, a unique transfer hydroformylation will be described that allows 
conversion of aldehydes/alcohols to olefins. The presentation emphasizes mechanistic studies that 
showcase the role of counter-ions for controlling selectivities. Lastly, we disclose applications of these 
catalysts for transforming feedstocks into more complex building blocks and natural products. 

  

 
 

Figure 1. Aldehyde C-H Bond Transformations 
 
 

References 
[1] Ryan T. Davison, Erin L. Kuker, and Vy M. Dong, Accounts of Chemical Research 2021 54 (5), 
1236-1250 
DOI: 10.1021/acs.accounts.0c00771 
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PL 2 

 
Organometallic Chemistry as the Driver for Earth Abundant Metal 

Catalysis Directed Toward Organic Synthesis 
Paul J. Chirik 

Department of Chemistry, Princeton University,  
Princeton, NJ 08544 USA 

Email: pchirik@princeton.edu 
 
Catalysis with Earth-abundant metals has emerged as an enabling tool in organic synthesis with 
impactful reactions ranging from asymmetric alkene hydrogenation to alkene hydrosilylation to various 
types of C–C bond-forming reactions. Many examples are now known where an Earth-abundant 
metal catalyst is more active or selective than a more traditional precious, heavy metal alternatives. 
Our research has been focused on applying catalysis with iron, cobalt, molybdenum and nickel to 
enable chemistry outside the scope of existing precious metal catalysts. My lecture will focus on how 
exploring fundamental organometallic chemistry questions enables new catalytic chemistry. Examples 
include what governs the kinetic and thermodynamic selectivity of the oxidative addition of arenes and 
heteroarenes relevant to catalytic C–H borylation? Another is how to enable the chemo-, regio- and 
stereoselectivity of arene insertion into metal-hydride bonds in the context of asymmetric arene 
hydrogenation? What governs transmetallation with iron, cobalt and nickel in C(sp2)–C(sp3) cross 
coupling? Answering these questions and their applications in pharmaceutically-relevant chemistry 
will be presented.    
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IN 2 

 
Cooperative Catalysis by Transition Metal Germylene Complexes 

 
Jesús Campos*a 

aInstituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas 
(CSIC) and Universidad de Sevilla 

Avenida Américo Vespucio 49, 41092 Sevilla, Spain.  
Email: jesus.campos@iiq.csic.es 

 

The field of bimetallic cooperation in homogeneous systems has become a hot research topic with a 
plethora of possibilities for bond activation and catalysis. In fact, there are many important 
transformations that require the concerted action of pairs of active metal sites, paralleling what is 
often found in metalloenzymes. Besides, proximal metal sites offer tunable features beyond those 
found in mononuclear species, as M-M bond order and polarity or single-site versus multi-site 
activation.1 Within this context, our group has recently explored the combination of transition metals 
and low-valent main group metals and metalloids to explore their cooperative behavior.2 In particular, 
the use of divalent heavier group 14 elements (tetrylenes) is particularly appealing given their strong 
σ-donor properties along with an empty p-orbital that can accept electron density. This ambiphilicity 
permits accessing transition metal tetrylene complexes that place a reactive site adjacent to the 
metal, and therefore offer opportunities for cooperation.3 In the last years we have focused on the use 
of Power’s germylene dimers [Ar*GeCl]2,4 where Ar* = C6H3-2,6-Ar2, as germylene fragments that 
bind transition metals with low-coordination numbers but enough kinetic stability due to the steric 
protection provided by terphenyl ligands. Our results pertaining the structure, bonding, cooperative 
reactivity and catalytic applications of several transition metal (i.e. Au, Rh, Pt, Ni) germylene 
complexes (Figure 1) will be discussed, including the activation and challenging catalytic conversion 
of ammonia. 
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Figure 1. Representative examples of transition metal germylene complexes whose 
structure, cooperative reactivity and catalytic applications will be discussed. 

 
References 
[1] a) Buchwalter, P.; Rosé, J.; Braunstein, P. Chem. Rev. 2015, 115, 28; (b) Berry, J. F.; Lu, C. C. 
Inorg. Chem. 2017, 56, 7577; (c) Campos, J. Nat. Rev. Chem. 2020, 4, 696. 
[2] See for example: a) Corona, H.; Pérez-Jiménez, de la Cruz-Martínez, F.; M.; Fernández, I.; 
Campos, J. Angew. Chem. Int. Ed. 2022, 61, e202207581; b) Bajo, S.; Theulier, C. A.; Campos, J. 
ChemCatChem 2022, e202200157; c) Somerville, R. J.; Borys, A. M.; Perez-Jimenez, M.; Nova, A.; 
Balcells, D.; Malaspina, L. A.; Grabowsky, S.; Carmona, E.; Hevia, E.; Campos, J. Chem. Sci. 2022, 
13, 5268; d) Bajo, S.; Alcaide, M. M.; López-Serrano, J.; Campos, J. Chem. Eur. J. 2021, 27, 16422. 
[3] Somerville, R. J.; Campos, J. Eur. J. Inorg. Chem. 2021, 3488. 
[4] Power, P. P. Acc. Chem. Res. 2011, 44, 627. 
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ST 1 

Non-noble Metal-based Transformations of (hetero)arenes 
 

Veronica Papa,a Johannes Fessler,a Haijun Jiao,a Haifeng Qi,a,b Tao Zhang,b 

 Kathrin Junge,*a Matthias Bellera 
aLeibniz-Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany. 
bCAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of 

Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. 
Email: kathrin.junge@catalysis.de 

 

The cost-effective and waste-free synthesis of materials, life science goods and all kinds of organic 
products require efficient chemical transformations. In this regard, development of more active and 
selective catalysts constitutes a key factor for achieving improved processes and providing the basis 
for a sustainable chemical industry. Despite continuous advancements in all areas of catalysis, still 
organic syntheses as well as the industrial production of most chemicals can be improved significantly 
in terms of sustainability and efficiency.  

In the talk, it will be shown how new and improved homogeneous non-noble metal-based catalysts 
can be developed. Specifically, the phenomenon of cooperative catalysis will be addressed in the 
context of non-noble metal pincer-based catalysts for the reduction of heterocyclic compounds 
(Figure 1).[1] In detail, it will be demonstrated that recently developed molecular-defined manganese 
catalysts enable catalytic hydrogenation processes with high yields and unprecedented selectivity. 
Especially, the influence of different substitution patterns at the ligand backbone for the phosphorous 
as well as at the nitrogen site on the catalytic performance of these pincer complexes is presented.[2] 
Based on the experimental outcome, spectroscopic investigations and density functional theory 
computations mechanistic insight into the catalytic hydrogenation reaction will be given.  

N
H

N

O
O

H2; NH3H2

CoMn

 
 

Figure 1. Non-noble metal catalyzed transformation of heteroarenes to piperidines. 
 

In addition, the principle of cooperative catalysis will be shown in the context of modern phosphorous-
free catalysts for reduction reactions.[1] By rational design novel ligands and complexes have been 
synthesized, which allow for unprecedented efficiency in such transformations. Finally, examples 
which demonstrate the potential of such catalytic processes with bio-relevant metal complexes are 
compared to more traditional catalytic reactions. In this respect, also the development of novel 
unpublished nano-structured metal catalysts is included.[3] 

 
References 
[1] Papa, V.; Cao, Y.; Spannenberg, A.; Junge, K.; Beller, M. Development of a Practical Non-Noble 
Metal Catalyst for Hydrogenation of N-Heteroarenes. Nat. Catal. 2020, 3, 135–142. 
[2] Papa, V.; Fessler, J.; Zaccaria, F.; Hervochon, J.; Dam, P.; Kubis, C.; Spannenberg, A.; Wie, Z.; 
Jiao, H.; Zuccaccia, C.; Macchioni, A.; Junge, K.; Beller, M. Efficient Hydrogenation of N-heterocycles 
catalyzed by NNP-Manganese(I) complexes at ambient temperature. Chem. Eur. J. 2023, 29, 
e202202774 
[3] H. Qi, Y. Li, Z. Zhou, Y. Cao, F. Liu, W. Guan, L. Zhang, L. Li, Y. Su, K. Junge, X. Duan, M. Beller, 
A. Wang, T. Zhang, Surface single-atom alloy Ru1CoNP catalyst for efficient furfural amination toward 
piperidine-based N-heterocycles. Nature Synthesis 2023, submitted. 
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ST 2 

 
Solvent-free Birch Reductions and Benzene C‒H Activation/C‒C Coupling 

mediated by a Room-Temperature Stable Electride (RoSE) 
 

Nathan Davison,a James A. Quirk,a James A. Dawsona and Erli Lu*a 
a Chemistry-School of Natural and Environment Sciences, Newcastle University. 

Newcastle upon Tyne, UK. NE1 7RU. 
Email: erli.lu@newcastle.ac.uk 

Birch reduction [1] and benzene C–H activation/C–C coupling [2] are essential tools for converting 
arene feedstock into value-added organic compounds and to build complex molecules. However, 
state-of-the-art methods require hazardous reagents (e.g., Group-1 metal-liquid ammonia, solvated 
electrons, strong oxidants), harsh conditions (e.g., high temperatures, long reaction time), expensive 
and/or specialized reagents/catalysts (e.g., precious metals), and last but not least, petrochemical-
derived organic solvents. From a sustainability standing point, the ideal scenario is that an easily 
accessible non-precious-metal reagent can mediate solvent-free Birch reduction and benzene C–H 
activation/C–C coupling at room temperature in short reaction time, but such an enabling reagent was 
unknown, until our report in 2023 [3]. We discovered an accessible and scalable Room-temperature 
Stable Electride (RoSE) reagent, namely K+(LiHMDS)e- (1) (HMDS: N(SiMe3)2), which mediated the 
first solvent-free Birch reductions and facile benzene C–H activation and C–C coupling. Herein we 
would like to present the breakthrough and its very recent updates. 

 
Figure 1. (a) Previous work in benzene and pyridine coupling. (b) Previous work in Birch 
reduction. (c) This work: mechanochemical synthesis of a room-temperature-stable, 3D 
electride K+(LiHMDS)e− (1) and its mediated solvent-free Birch reductions and facile benzene 
and pyridine coupling. 
References 
[1] Parikh, A.; Parikh, H.; Parikh K. Chapter 18. Birch reduction. in: Name Reactions in Organic 
Synthesis. Foundation Books, 2006: 69-72 
[2] Lv, F.; Yao, Z. -J. Sci. China Chem. 2017; 60, 701-720. 
[3] Lu, E. and co-workers, Chem 2023, 9, 1016/j.chempr.2022.11.006 
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IN 3 

 

Development of New Nitrogen Ligands for Pd-Catalyzed C–H 
Functionalization 

 
Jung Min Joo 

Department of Chemistry, Kyung Hee University, Seoul 02447, South Korea 
Email: jmjoo@khu.ac.kr 

 

Ligand design is critical to the development of efficient transition-metal-catalyzed C–H 
functionalization reactions. New classes of bidentate ligands containing pyrazole were developed to 
enable Pd-catalyzed C–H functionalization of (hetero)arenes. A modular approach was employed to 
prepare a series of pyrazolopyridines (PzPy), pyrazolonaphthyridines (PzNPy), and 
pyrazolopyridones (PzPyOH). The incorporation of pyrazole into the ligand framework provides 
flexibility in the binding to Pd compared to strongly binding, rigid pyridine. The catalytic applications of 
PzNPy ligands were successfully demonstrated in the Pd-catalyzed aerobic C−H alkenylations of 
aniline, alkoxybenzene, pyrrole, thiophene, and metallocene derivatives. Furthermore, PyPyOH 
containing a 2-pyridone moiety as an internal base facilitated C−H cleavage, enabling meta-selective 
alkenylation and perdeuteration even at challenging sp2 C−H bonds. Mechanistic studies and DFT 
calculations were performed to illustrate crucial factors in the ligand design for Pd-catalyzed C−H 
functionalization. 
 

 

   
 
 
 

 
References 
[1] Jeong, S.; Joo, J. M., Acc. Chem. Res. 2021, 54, 4518-4529. 
[2] a) Kim, H. T.; Kang, E.; Kim, M.; Joo, J. M., Org. Lett. 2021, 23, 3657-3662. b) Kang, E.; Jeon, J. 
E.; Jeong, S.; Kim, H. T.; Joo, J. M., Chem. Commun. 2021, 57, 11791-11794. c) Müller, S.; Lee, W.; 
Song, J. Y.; Kang, E.; Joo, J. M., Chem. Commun. 2022, 58, 10809-10812. 
[3] Yun, S. J.; Kim, J.; Kang, E.; Jung, H.; Kim, H. T.; Kim, M.; Joo, J. M., ACS Catal. 2023, 13, 4042-
4052. 
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ST 3 

 
Mechanochemical Synthesis of Organometallic Compounds 

 
Hajime Ito*a,b 

a Institute for Chemical Reaction Design and Discovery (WPI-ICReDD),  
Hokkaido University, Sapporo, Hokkaido 060-8628, Japan 

b Division of Applied Chemistry, Graduate School of Engineering,  
Hokkaido University, Sapporo, Hokkaido 060-8628, Japan 

Email: hajito@eng.hokudai.ac.jp 
 

In the direct synthesis of main-group organometallic compounds from organohalides, the active metal 
is used as it is, or a metal whose surface has been activated in some way is reacted in an 
organohalide solution. We have recently deve 
loped a method for the direct reaction of metals with organohalides using a ball mill. We have 
reported the synthesis and reaction of Grignard reagents, organocalcium reagents, and 
organomanganese reagents, which can be carried out almost solvent-free and under air. Reduction of 
aromatics by lithium metal under ball-milling conditions, ultra-fast mechanochemical Birch reduction 
was also reported recently. 
  In 2019, we reported a novel procedure that revolutionizes the synthesis of Grignard reagents. Our 
method involves ball-milling with the presence of a small amount of THF, resulting in the formation of 
paste-like Grignard reagents within 60 minutes. We also discovered that this technique can be used 
to synthesize aryl calcium compounds, known as heavy Grignard reagents, which exhibited 
unprecedented reactivity in substitution reactions of alkyl halides. Our ball-milling method also 
simplifies the synthesis of organomanganese compounds, which typically requires complicated 
protocols. 
  Mechanochemical conditions also provide a simplified approach to Birch reduction, which 
necessitates cryogenic and inert conditions with liquid ammonia, resulting in long processing times. 
However, with mechanochemical Birch reduction, the reaction is typically completed in one minute. 
This accelerated reaction is facilitated by the mechanical activation of the lithium surface in the 
presence of the aromatic substrate, which promotes the transfer of electrons from lithium metal to the 
substrate. 
  Our research has shown that mechanochemical methods are highly effective in the preparation of 
organometallic compounds. I believe this has great potential to open the development of new 
synthetic reactions involving organometallic compounds. 
 

 
 

Figure 1. Mechanochemical reaction of main-group metals. 
 
 

References 
[1] Takahashi, R.; Hu, A.; Gao, P.; Gao, Y.; Pang, Y.; Seo, T.; Maeda, S.; Jiang, J.; Takaya, H.; 

Kubota, K.*; Ito, H.*Nature Commun. 2021, 12, 6691. 
[2] Gao, P.; Jiang, J.; Maeda, S.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2022, e202207118. 
[3] Takahashi, R.; Gao, P.; Kubota, K.*; Ito, H.* Chem. Sci. 2023, 14, 499. 
[4] Gao, Y.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2023, e202217723. 
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ST 4 

 

New Catalytic Explorations on Alkali (Earth) Metal Complexes 

 
Hui-Zhen Du, Bing-Tao Guan* 

Department of Chemistry, Fudan University 
Email: Bing-Tao Guan; bguan@fudan.edu.cn 

 
Alkali (earth) metals are rich in reserves, cheap in price and good in biocompatibility, and have 

great potential for catalytic application.1 However, the catalytic application of these metal complexes 
is facing with many problems such as poor stability of complexes, monotonous catalytic mode and 
limitation of substrate scope. Focusing on the scientific problems about the principle and potential of 
s-block metal catalysis, we adopted ate complex strategy to stabilize the active organometallic 
intermediates and discovered a new approach of kinetic deprotonative functionalization (KDF): the 
reaction under relative weak conditions via the combination of the irreversible conversion of the 
carbanion and constant reestablishment of the equilibrium. With the combination of ate complex 
strategy and the concept kinetic deprotonative functionalization, we could establish a new 
deprotonative equilibrium of less acidic C-H bonds and hydrogen with less basic ate complexes, and 
developed a series of new reactions including catalytic C-H bonds addition to olefins, catalytic 
hydrogenation and catalytic hydrogen isotope exchange reactions. Thus, we expanded both the 
reaction types and substrate scope of the alkali (earth) metal catalysts and revealed their distinct and 
sometimes better activity and selectivity than transition metal catalysts.2 
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Figure 1. New catalytic reactions with alkali (earth) metal complexes. 
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In this presentation, recent developments in synthetic methodology from our group will be discussed. 
This will include e.g. new developments in the area of shuttle catalysis, including applications to 
feedstock and waste valorization. This will be completed by a discussion on further methods recently 
developed in our group, as well as accompanying mechanistic studies. 
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Organosodium compounds have attracted the attention of the scientific community in recent years as 
an alternative to widely used organolithium reagents.[1] Lithium alkyls and amides reside at the front of 
organometallic synthesis as key players in countless transformations, owing to their availability, 
substantial stability and solubility in hydrocarbon solvents.[2] However, these desirable traits are often 
pitfalls of heavier alkali-metal organometallics, meaning that their applications have remained 
underexplored. While recent reports have hinted at the untapped potential of these reagents,[3] the 
constitution of the organometallic intermediates that operate in these reactions has been overlooked, 
missing an opportunity to tackle their high reactivity and improve their poor solubility.  
Filling this gap in the knowledge, the preparation of organosodium compounds soluble in hydrocarbon 
solvents and the isolation and characterization of reactive sodium organometallic intermediates in the 
solid state and in solution by X-Ray crystallography and 1H DOSY (Diffusion Ordered SpectroscopY) 
have allowed the development of new protocols for the functionalisation of organic molecules. Our 
efforts have been focused on selective deprotonative metalation reactions of synthetically attractive 
arenes, providing access to the selective functionalization of these scaffolds, including the borylation[5] 
and the perdeuteration of aromatic scaffolds,[6] and the aroylation of toluene derivatives via selective 
benzylic metalation.[7] The reactivity and/or selectivity obtained with organosodium compounds was 
different to the one with its lithium analogues, opening new vistas in the use of polar organometallic 
reagents for the functionalization of organic molecules. 
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Primary hyperoxaluria (PH) is a group of devastating genetic diseases of increased hepatic 
oxalate production that can result in end-stage kidney disease in young patients. Both 
glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous 
synthesis of oxalate and are clinically validated targets for treatment of PH. Utilizing a 
structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual 
GO/LDHA inhibitors to investigate whether dual inhibition of GO and LDHA may provide 
advantage over single agents in treating PH. Dual inhibitor 7 demonstrated inhibition of GO 
and LDHA in an enzymatic in vitro assay and oxalate reduction in an Agxt-knockdown mouse 
hepatocyte assay. Reduced potency observed for 7 in this hepatocyte assay and poor liver 
exposures in vivo were proposed to result from reduced cellular permeability. As such, a 
second generation of inhibitors, including compound 15, was designed with more lipophilic 
linker moieties. Use of Pd-catalyzed Suzuki−Miyaura coupling reaction with a pinacol 
boronate intermediate was a key step in the synthesis of this series of compounds. X-ray 
crystal structures of compound 15 bound to individual GO and LDHA proteins validated our 
SBDD strategy. Unfortunately, second generation inhibitors also failed to demonstrate 
significant pharmacodynamic effect in vivo likely due to low liver exposures. This work 
highlights the challenges in optimizing in vivo liver exposures for diacid containing 
compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone 
in an in vitro setting. 
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The ubiquity and stability of alkyl C–H bonds have rendered their selective functionalization 
an area of great interest. The borylation of C–H bonds is an appealing transformation because the 
resulting compounds can be diversified through well-known reactions, enabling the installation of 
diverse functional groups at the position of the original C-H bond.1 While the borylation of aryl C–H 
bonds is well-developed2, borylation of alkyl C–H bonds remains a challenge. Recently, 
phenanthroline ligand scaffolds have been explored for the borylation of primary, secondary,3-4 and 
tertiary5 alkyl C–H bonds. We envisioned that studies of alternative, but related, ligand scaffolds could 
lead to insight into how to develop more stable, active, or selective catalysts, ultimately increasing the 
applicability of Ir-catalyzed borylation of alkyl C–H bonds. To this end, it was reported in 2019 that the 
computed barrier for the proposed turnover limiting step of reductive elimination to form the C–B bond 
from an iridium complex with an N-heterocyclic carbene pyridine (NHC-py) ligand was lower than from 
iridium ligated by phenanthroline derivatives.6 We hypothesized that the electron-donating N-
heterocyclic carbene moiety could stabilize the metal through strong coordination.7 Thus, we sought 
to test this prediction of a superior ligand by the computational work.  

We report the borylation of the secondary C–H bonds of tetrahydrofuran (THF) by iridium 
catalysts containing NHC-py ligands. Reactions performed with isolated carbene in combination with 
iridium and catalytic sodium tert-butoxide led to the highest yields of borylated THF. NMR studies and 
high yields obtained from NHC-Ar ligands support the formation of a catalytically competent 
cyclometallated NHC-iridium complex. The yield and selectivity from reactions conducted with an 
independently synthesized cyclometallated iridium complex was similar to the yield and selectivity 
from reactions conducted with a mixture of iridium precatalyst and ligand. In contrast to previous 
reports of the borylation of THF occurring exclusively at the 𝛽𝛽-position with phenanthroline ligands3–4, 
and computationally predicted reactivity for these NHC-py ligands,6 reactions catalyzed by NHC-Ar 
ligands, in combination with iridium, form two isomeric boryl THF products in up to a 6.5 : 1 (α : β) 
ratio.  

Studies to determine the role of the sodium tert-butoxide base support association of the 
base to the iridium complex. Ongoing work aims to study reactions of the cyclometallated NHC-Ar 
iridium complexes in the presence of alkoxide base with density functional theory to evaluate binding 
modes of the alkoxide under catalytic conditions.  
 
 
 
 
 
 
 
 
 
Figure 1. Conditions for the borylation of tetrahydrofuran with an iridium complex containing 

an NHC-Ar ligand  
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Carbones (LCL) have emerged recently as a new class of organic molecules featuring 
carbon(0) directly stabilized by two electron-rich groups (L) through Lewis donor-acceptor 
interaction.1 Other mesomeric features can also be understood in terms of allenic or 
zwitterionic form (see Figure 1).  Owing to the peculiar bonding situation and the zero-valent 
nature of the central atoms, carbones have attracted much attention in the chemical 
community as NHC alternatives because their strong σ-donating ability broadly impacts 
transition-metal coordination, small molecule activation, main-group chemistry, redox non-
innocent coordination, and catalysis.2 This presentation will describe the synthetic 
preparation and chemical properties of the carbone as well as its application toward 
supporting metallic complexes for catalysis in tandem photoredox, cross-coupling reaction 
via tandem C-H and C-O bond activation and a new spin in diversifying FLP reactivity with 
co-modulator benzyl alcohol. 
 

 
Figure 1. Mesomeric form: bonding situation of carbones. 
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The recent discovery of gold(I)/gold(III) redox chemistry greatly transcends cationic gold 
chemistry from simple π-acid catalysis, which serves a powerful tool for C-C or C-X bond 
construction. However, with the high oxidation potential between Au(I) and Au(III), ca. ~1.4 
eV, gold redox catalysis required the application of strong oxidants with at least 
stoichiometric amount. Therefore, to achieve gold redox catalysis under mild conditions, with 
low cost and mild oxidants, is highly desired to make the overall process practical with 
improved functional group tolerability.  Herein, we disclosed novel approaches to facilitate 
oxidation of Au(I) to Au(III) through 1) Aryldiazonium salts as the mild coupling partner/ 
oxidant, gold catalyzed cross-coupling reactions are accomplished without any external 
oxidants under photocatalyst-free condition. 2) Employing sulfonium or diselenium cation as 
mild oxidants for the alkyne functionalization. 3) Electrochemical approach in promoting gold-
catalyzed oxidative coupling.1 These approaches open an opportunity for gold redox 
catalysis. 
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α–Functionalized amines and their derivatives are integral fragments of a vast array of 
pharmaceutical agents, agrochemicals and natural products.[1] Therefore, the development of a novel 
and efficient strategy to access these functionalities would be highly relevant for both academic and 
industrial applications. Within the scope of recently developed methodologies, the reductive 
functionalization of tertiary amides provides a synthetically useful access point towards a wide range 
of α–branched amine structures. In particular, the use of Vaska’s complex (IrCl(CO)(PPh3)2), in 
conjunction with a siloxane-based reductant, has come to the forefront as an effective system for 
chemoselective activation of these notoriously robust and ubiquitous building blocks.[2] Traditionally, 
using these mild hydrosilylation conditions, tertiary amides can be converted in situ into reactive 
iminium ion intermediates that can be further intercepted with a variety of nucleophilic entities.[2] It was 
envisioned that through further transformation of the iminium ion into a nucleophilic α-amino radical 
species using a photocatalytic approach, it would be possible to venture into a previously inaccessible 
area of chemical space.[3]  

To address this outstanding synthetic challenge, a streamlined one-pot procedure for mild 
generation of α-amino radicals from tertiary amide building blocks has been developed.[3] The free 
radical species were successfully coupled to the electrophilic dehydroalanine acceptor to produce an 
array of novel, α-functionalised amine derivatives. Furthermore, this strategy was applied towards 
reductive secondary amide functionalisation, as well as intramolecular examples that yielded 
substituted N-heterocycles. In addition to the experimental investigations, Density Functional Theory 
(DFT) analysis was utilised to gain further insight into the reactivity and physical properties of the 
reaction. Finally, to demonstrate the versatility and modularity of the developed dual catalytic, 
reductive functionalization approach, this concept was adapted to access enantioenriched products 
from feedstock starting materials, with the preliminary findings of this investigation disclosed herein. 
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Figure 1. General strategy for umpolung reductive functionalization of tertiary/secondary 
amides.  
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The development of new reactions and catalysts for the oxidative cross-coupling of C-H bonds with C-
H, N-H and O-H bonds will be discussed. Strategically, these reactions allow for the synthesis of 
complex molecules from their constituent components, minimizing the need for functional group 
activation and manipulation. A novel planar chiral catalyst platform for enantioselective reactions will 
be presented. Illustrative examples of emergent applications will be provided.  
 

 
 

Figure 1. Illustrative enantioselective C-H amidation. 
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The ability of the bismuth (Bi) to maneuver between different oxidation states in a catalytic redox 
cycle will be presented. We will show how Bi challenges the current dogmas of main group redox 
catalysis by emulating canonical organometallic steps of transition metals. A series of Bi complexes 
capable of revolving between oxidation states Bi(I)/Bi(III) and Bi(III)/Bi(V) have been unlocked and 
applied in various contexts of catalysis for organic synthesis. For example, capitalizing on the 
Bi(III)/Bi(V) redox pair, we have developed a catalytic protocol for the C‒F, C‒O and C‒N bond 
formation. We will show how bismuth is capable of a unique 5-membered reductive elimination step, 
which differs from the traditional 3-membered of transition metals.  

Additionally, we will show how a low-valent redox manifold based on Bi(I)/Bi(III) enabled the 
reduction of hydrazines and nitro compounds, the catalytic decomposition of the rather inert nitrous 
oxide (N2O) and the catalytic hydrodefluorination of C(sp2)‒F bonds. In addition, we will show how one-
electron pathways are also accessible, thus providing a platform for SET processes capitalizing on the 
triad Bi(I)/Bi(II)/Bi(III) for organic synthesis. Finally, we will also show how redox-neutral organometallic 
steps (insertion, transmetallation and ligand exchange) can be merged in a catalytic platform to unlock 
novel organic transformations. For all methodologies, a combination of rational ligand design with an in 
depth analysis of all the elementary steps proved crucial to unlock the catalytic properties of such an 
intriguing element of the periodic table.  
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The optimization of catalytic, enantioselective reactions is challenging as it involves the empirical 
evaluation of several different reaction components (e.g., reactant, catalyst, solvent, etc.) to determine 
the best set of conditions. We have aimed to develop several data science-based tools that streamline 
this process by constraining the number of experiments to be performed in the lab while increasing the 
proportion which yields the desired high levels of enantiomeric excess. More specifically, in this talk, I 
will describe how we apply a diverse set of machine learning algorithms to aid in the identification of 
optimal reaction conditions1-3 and general catalyst systems.4 A significant portion of this talk will focus 
on our experimental efforts in evaluating these tools for developing enantioselective reactions. Several 
studies will involve the reaction of organometallic compounds, including the dearomatization of 
naphthols and indoles as examples. 
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Multicomponent Coupling Strategies via Iron Azametallacyclobutene 

Complexes 
 

Jamie M. Neely*a 
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First row transition metals present opportunities for the discovery of novel catalytic 
transformations enabled by their distinct reactivity. We recently demonstrated the regioselective [2+2] 
cycloaddition reaction of a (β-diketiminate)iron imide with an unsymmetrical internal alkyne to afford 
an iron azametallacyclobutene complex (Figure 1).1,2 This complex incorporates terminal alkynes 
(Figure 1a), nitriles (Figure 1b), and isonitriles (Figure 1c) with complete control over the formation of 
the β-alkynyl enamine, imidazole, and imidoyl ketenimine products, respectively. The stoichiometric 
reactivity observed establishes a foundation for the development of new catalytic multicomponent 
coupling methods mediated by iron azametallacyclobutene complexes that generate valuable 
nitrogen-containing compounds.  

 
Figure 1. Iron-mediated multicomponent coupling. 
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Nitrogen-containing compounds are widely present in both natural products and synthetic 
compounds, for example, they show up within functional materials, top-selling drugs, as well as 
bioactive molecules. Thus, organic chemists have paid considerable attention in developing novel 
methodologies for their preparation. To synthesize these compounds in an efficient way, researchers 
have focused on the direct functionalization of hydrocarbons via C–H and/or C–C bond cleavage. 
Although significant progress has made in the direct functionalization of simple hydrocarbons, direct 
incorporation of N-atoms into the simple substrates via C–H and/or C–C bond cleavage remains 
challenging due to the inert chemical bonds and the unstable character of some N-sources under 
oxidative conditions. By using readily available reagents as nitrogen source, we recently developed 
some highly efficient C-H/C-C bond oxygenation,[1] nitrogenation,[2] and halogenation reactions[3] for 
the synthesis O-, N-, and/or halogen atom containing compounds. In this presentation, our recent 
progress on the direct C-C bond nitrogenation will be introduced (Figure 1). 
 

 

C C C N[N]

Nitrogenation
 

 
Figure 1. C-C bond nitrogenation. 
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The exiting development of homogeneous asymmetric catalysis in the past half century has 
relied on the discovery of small-molecular catalyst structures with static (fixed) molecular chirality. 
Establishment of several privileged structural motifs such as binaphthyl and ferrocene derivatives is 
particularly noteworthy.  In stark contrast, utilization of chiral macromolecular structures as the chiral 
catalyst scaffold has gained little attention, even though the unique characteristics of polymer 
structures such as high recoverability, huge steric effect, and dynamic conformational change may 
open up new possibilities of chiral catalysts.   

In this communication, new helical macromolecular chiral catalysts are described, of which 
helical chirality solely determines the enantioselectivities and is sharply switchable by solvent effects. 
A wide variation of reaction solvents from pure water to alkanes can be employed by virtue of the 
modifiable side chain structures, which secure the catalysts’ solubility.  Note that the helical chirality of 
the catalysts bearing chiral side chains is switchable by changing achiral reaction solvents.  In an 
extreme case, use of cyclooctane and n-octane gave opposite enantiomers both with high 
enantioselectivities.  On the other hand, those bearing only achiral side chains can be used as chiral 
catalysts, even though they exist as an exactly 1:1 mixture of right- and left-handed helical 
conformations in achiral solvents.  Single-handed helix sense could be selectively induced by 
nonbonding interaction with chiral solvents such as d- or l-limonene.  Also discussed is the effect of 
nonbonding chiral guests for induction of single-handed helical sense in achiral solvents.   
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The relatively abundant and inexpensive nature of nickel, paired with its propensity to engage in 
oxidative addition, offers advantages in the quest to develop new and useful alternatives to copper 
and palladium in cross-coupling catalysis. While both photochemical and electrochemical methods 
have been employed to promote catalytic turnover, such protocols exhibit substrate scope limitations, 
including poor catalytic performance with (hetero)aryl chlorides and phenol derivatives that represent 
the most inexpensive/widely available electrophile classes. In an alternative (unplugged?) approach, 
my research group has explored the development of sterically demanding and modestly electron-
donating bisphosphines (including the DalPhos series), which we envisioned might promote C-N/C-O 
reductive elimination within a putative Ni(0/II) catalytic cycle while circumventing catalyst deactivation 
arising from bis-chelation and/or comproportionation. Notably, the catalytic performance of Ni 
catalysts supported by these DalPhos ligands has in many instances been found to be competitive 
with, or superior to, the best metal catalysts known (Pd, Cu, Ni, or other). The development and 
application of this new DalPhos ligand family, including recent methodology and mechanistic studies 
thereof, will be presented (Figure 1).1,2  
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Figure 1. Ni/DalPhos enabled cross-couplings. 
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Abstract 

 
Aminofunctionalization of alkenes represents a direct and powerful strategy to transform 
simple and readily available olefins into richly functionalized nitrogen-containing compounds 
of great value. Toward this end, we have developed copper-catalyzed alkene 
aminofunctionalization reactions by exploring electrophilic amination and the coupling 
reactions of versatile nucleophiles. These methods afford a rapid and direct access to a 
diverse range of 1,2-amino alcohols,1 1,2-amino halides,2 and medicinally valuable 
(hetero)arylethylamines.3 Mechanistic studies on these reactions have revealed a novel 
electrophilic amination-initiated activation pathway that has great potentials for a general, 
powerful platform for designing regio- and stereoselective new functionalization 
transformations of alkenes and dienes.  
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A key goal for the pharmaceutical process chemist is to improve synthetic efficiency and sustainability 
while supplying active pharmaceutical ingredients (APIs) to patients. This puts a premium on 
replacing expensive and difficult to source rare-earth catalysts with more widely available base-
metals. The Miyaura borylation and Suzuki cross-coupling reactions are frequently used palladium-
catalyzed transformations to construct C-B and C-C bonds respectively, often in sequence. This 
makes it an impactful target for implementing base-metal nickel catalysis as an alternative to 
established palladium methods. Many literature approaches to nickel-catalyzed C-B and C-C bond 
formations are challenging to adapt to process chemistry due to the use of unstable Ni(0) pre-
catalysts, heterogeneous reaction conditions, and reduced compatibility with complex heteroaryl 
substrates. However, nickel benefits from improved scope of the electrophile, abundant catalysts, and 
facile metal purge – advantages that compound when processes are scaled to metric tons. This talk 
details our ongoing efforts to transition Miyaura borylation and Suzuki coupling reactions from 
palladium to nickel catalysis. We have developed process-relevant screening platforms for C-B and 
C-C coupling reactions and applied them to the synthesis of key intermediates in our portfolio on 
multi-kg scale. Parallel efforts to understand the mechanism of catalyst activation, as well as on-cycle 
vs off-cycle metal speciation, led to the discovery of a more robust aqueous nickel-Suzuki method. 
The improved aqueous nickel-catalyzed Suzuki reaction conditions allowed us to directly telescope 
nickel-catalyzed Miyaura borylation reaction streams into Suzuki couplings to improve process 
efficiency. Through this focused effort on nickel catalysis, we have significantly improved our 
mechanistic understanding, allowing for more consistent application of nickel catalysis to our portfolio 
moving forward. 
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Figure 1. Process focused methods for nickel-catalyzed C-B and C-C bond formations  
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Nickel(0) complexes bearing quinones and related ligands are bench-stable, isostructural analogs of 
the canonical nickel(0) complex, Ni(COD)2 (COD = 1,5-cyclooctadiene).[1–3] In many contexts, such as 
in cross-coupling reactions, these Ni(0)–quinone complexes are able to perform equivalently to 
Ni(COD)2, with their enhanced stability allowing reactions to be conveniently set up without an inert-
atmosphere glovebox. Beyond their operational convenience, Ni(0)–quinone complexes have recently 
begun attracting attention for their unique reactivity profiles in catalysis, which stems from the ability 
of the quinone ligand to adopt multiple coordination modes, each with a distinct steric and electronic 
profile (Figure 1). This seminar will discuss the genesis of this family of pre-catalysts, the current 
understanding of their mechanisms of action, and applications in enabling otherwise challenging 
alkene functionalization reactions.  
 
 

 
 

Figure 1. Overview of Ni(0)–quinone coordination modes and applications in alkene 
functionalization. 
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The ubiquitous carboxylic acid is an ideal carbonyl donor for synthesizing functional carboxylic acid 
derivatives. In recent years, they have also attracted attention as radical precursors for redox 
catalysis. Carboxylic acids are innately Brønsted acidic, which inhibits the deprotonation of α-protons 
to form enediolate. Therefore, even recent enolization methods still require stoichiometric amounts of 
base.1 Due to the difficulty of catalytic enolization of carboxylic acids, we first developed reactions 
using carboxylic acid equivalents instead of carboxylic acids. For example, N-acylpyrazole can be 
activated by Lewis acidic metals to form enolates even under weakly basic conditions, allowing 
catalytic enolization without adding an external base.2 Under this reaction condition, it is possible to 
chemoselectively generate N-Acylpyrazole enolates even in the presence of α-protons of more acidic 
nitro groups (eq. a). Similarly, the enolization of 2-Acylimidazole, which has a ketone structure but can 
be easily converted to carboxylic acid, 
is also readily proceeded by iron 
catalysts.3 In catalytic enolate cross-
coupling reactions and 
dehydrogenative alkylation reactions 
of 2-Acylimidazole, the Lewis acidity 
of the redox-active iron catalyst 
selectively activated 2- acylimidazole, 
even in the presence of more acidic α-
protons (eq. b).  

We then turned our attention to the more challenging catalytic enolization of carboxylic acids. 
Previous enolization methods have only been applied to redox-neutral couplings with 2e– 
electrophiles, and catalytic α-functionalization of carboxylic acids by 1e– radical processes has not 
been achieved date. We therefore developed direct α-oxidation of carboxylic acids via radical process 
through redox active Lewis acid activation strategy.4 The present catalysis required no external 
Brønsted base and exhibited 
wide functional group 
tolerance. In this reaction, 
alkali metal in molecular 
sieves substantially 
increased the catalytic 
activity. This catalytic system was found to be a bimetallic cooperative catalytic system of iron and 
alkali metals that efficiently enolize carboxylic acids. This mechanism enables the chemoselective 
functionalization of carboxylic acids in the presence of carbonyl compounds such as ketones, esters, 
and amides (eq. c). Recent studies on catalytic α-deuteration of carboxylic acids5 will also be 
presented. 
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One of the most important considerations when developing a transition metal-catalyzed synthetic 
method is the selection of an ancillary ligand. With thousands of unique ligand structures designed to 
complement equally diverse metal/substrate chemical space, identification of an effective ligand can 
be challenging, as the ability to rationalize and predict how ligands will impact catalyst structure and 
reactivity often requires extensive study. Thorough mechanistic investigations have elucidated many 
of these ligand structure–reactivity relationships (SRRs) with Pd, leading to substantial advances in 
ligand and precatalyst design for cross-coupling reactions. However, a similar mechanistic 
understanding of ligand effects is lacking for Ni, limiting its widespread adoption in synthesis as a 
practical alternative and complement to precious metal catalysts. This lecture will discuss my group’s 
efforts to design new ligands for Ni, develop a mechanistic understanding of Ni’s unique structure-
reactivity relationships, and apply these advances to the development of improved and new catalytic 
methods for chemical synthesis. 

 

 
 

Figure 1. Doyle group program in Ni-catalyzed cross-coupling 
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Modern catalytic strategies frequently rely on substantial optimization and high throughput screening 
for the identification of optimal conditions. To reach the next frontier in the construction of molecules 
via automation and programmable synthetic approaches, novel and fully orthogonal catalysis regimes 
are imperative to enable synthetic manipulations in an orthogonal manner to established bond 
forming approaches and associated catalysis regimes. This talk will give insights and developments 
towards this goal from our laboratory. The focus will be on multinuclear palladium[1] and nickel 
catalysis[2] of oxidation state (I), the exploration of organogermanes[3] as coupling partner as well as 
strategies to accelerate the identification of new catalysts.[4] 
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In this presentation, we describe Markovnikov hydrofunctionalization of alkenes through a cooperative 
catalysis consisting of photoredox, cobalt and Brønsted acid catalysts under visible light irradiation. 
For example, we disclosed a triple photoredox/cobalt/Brønsted acid catalysis enabling Markovnikov 
selective hydroalkoxylation of alkenes with alcohols.1 Therein, a cobalt(II) complex receives an 
electron and a proton from a photoredox and a Brønsted acid catalyst, respectively, to form a 
cobalt(III) hydride species, which undergoes metal hydride hydrogen atom transfer (MHAT) to an 
alkene producing an alkyl radical with complete Markovnikov selectivity. 
 

 

 
 
 

Figure 1. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis  
Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes 
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Organopalladium catalysis remains among the most powerful and versatile methods in the synthesis 
of complex organic molecules. To best utilize these methods at the lowest catalyst loadings possible, 
our research group is developing new tools to enable efficient reaction screening and scale-up, and to 
enhance synthetic planning to maximize reactivity and selectivity.  

We recently disclosed an alpha-diimine coordinated Pd(0) complex – DMPDAB-Pd-MAH – that is an 
easily prepared and general precatalyst specifically designed for high-throughput experimentation.1 In 
addition to applications in cross-coupling chemistry, we have applied this compound to access new 
chiral Pd(0) catalysts for asymmetric allylic alkylation (Figure 1, left).2 

The application of statistical modeling to chemical reactivity is leading to advances in computer-
aided synthesis design and deeper mechanistic understanding.3 Our approach to building quantitative 
models for catalytic reactivity hinges on studying elementary steps in catalytic cycles to maximize 
generality across multiple reaction classes. Our first report in this area centers on predicting oxidative 
addition reactivity for (hetero)aryl ((pseudo)halides to Pd(0). The resulting model makes accurate 
quantitative predictions about rate and selectivity for myriad catalytic reactions.4 

 

 
 

Figure 1. Recent developments in organopalladium chemistry, including new Pd(0)-based 
precatalysts for cross-coupling and allylic alkylation (left), and predictive models for oxidative 

addition rates to Pd(0) (right). 
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The development of economical and selective catalytic methods is of significant importance for the 
promotion of sustainable chemical synthesis. My group at National University of Singapore has 
focused on the identification of catalytic enantioselective redox-neutral transformations that directly 
convert feedstock materials to valuable chiral entities with wide application in organic synthesis. In 
particular, we have achieved a series of direct stereoconvergent “substitution” of readily available 
racemic alcohols via borrowing hydrogen catalysis for economical access to chiral amines, N-
heterocycles, alcohols and ketones. Recent progress made along these lines will be discussed in 
details in this presentation. 
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The synthesis of nitrile-containing building blocks has garnered considerable attention from the 
community for over a century due to their prevalence in pharmaceuticals and their versatility as 
synthetic intermediates. In this field, the use of toxic cyanide salts (and their equivalents) or HCN as a 
source of nitrile to forge C–CN bonds remains a problem.  My group has developed new synthetic 
methods for the synthesis of nitrile-containing building blocks that use non-toxic, bench-stable, nitrile-
transfer reagents.1,2 This presentation will highlight our contributions to this field, with a particular 
focus on the development of Ni-catalyzed methods for the synthesis of nitriles.2  
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Transition-metal-catalyzed regioselective C–H functionalization of arenes has been achieved by 
taking advantage of various attractive interactions such as hydrogen-bonding, ion-pair, and Lewis 
acid-base interactions, or by electronically biasing the substrate. However, the regioselective 
functionalization of simple arenes such as alkylbenzenes, lacking in such interactions has remained 
arduous. The steric control strategy has been successful in blocking the proximal ortho position, but 
differentiation of remote positions such as meta and para is challenging.1,2 We report here a 
conceptually new ligand, SpiroBpy-Bpin, that sterically protects the remotest para site besides the 
ortho site to achieve meta-selective C–H activation in the iridium-catalyzed borylation.3 Thus, the rigid 
Bpin group on three-dimensionally expanded SpiroBpy functions as a “steric roof” to create a 
molecular pocket that accommodates the substrate approaching the catalytic center only in the meta 
orientation. The strategy proved general, and a variety of monosubstituted arenes including 
alkylbenzenes, anilines, phenols, and drug molecules could be selectively borylated at the meta 
position. We also found that the iridium/SpiroBpy catalyst accelerates the C–H borylation reaction 
and the reactions of reluctant electron-rich arenes proceeded more efficiently than with commonly 
used ligands such as dtbpy and tmphen. 
 
 

 
 

Figure 1. 
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Four-membered carbocycles are important structural motifs found in several drugs and natural 
products.1 Many studies have reported the enantioselective synthesis of a wide range of 
cyclobutanes, however, methods to access chiral cyclobutenes are scarce and generally limited in 
terms of diversification, furnishing only mono–, di–, and, rarely, tri- and tetrasubstituted cyclobutenes.2 
Cyclobutenes are highly advantageous as intermediates because the residual olefin allows for greater 
synthetic freedom, leading to a plethora of various saturated and unsaturated analogs. Consequently, 
there is a pressing need to design new strategies for accessing chiral cyclobutenes; syntheses that 
can provide universal access to various functionalities and substitution patterns. Drawing on the 
attractive yet underexplored approach of enantioselective desymmetrization, prochiral 1,2-
dihalocyclobutene imides were subjected to a novel dual Ir/Ni-catalyzed photoredox C(sp2)–C(sp3) 
cross-coupling with alkyltrifluoroborate salts to install a convertible carbon fragment (R2) in good 
yields and >90% enantiomeric excess (Figure 1). Optimization of the key desymmetrization step 
focused on the chiral ligand, choice of cross-coupling partner, and other factors to limit side products 
and enhance enantioselectivity. To demonstrate the utility of this new method, the resulting chiral 
1,2,3,4-tetrasubstituted cyclobutenes were transformed in a divergent manner into several other 
potentially valuable four-membered carbocycles while maintaining optical purity. For example, a 
second cross-coupling of the residual C(sp2)–X bond followed by regioselective imide opening leads 
to chiral 1,2,3-4-tetrasubstituted cyclobutene products functionalized with four different carbon-based 
substituents; a selective outcome that would be difficult to achieve with alternative strategies such as 
direct [2+2] photocycloadditions. 

 

 
 

Figure 1. Enantioselective desymmetrization of 1,2-dihalocyclobutene imides. 
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Genetic code expansion has drastically increased the number of amino acids we can incorporate into 
protein scaffolds, including expanding the range of metal-binding amino acids.1 Unnatural amino 
acids containing rigid bidentate ligands as side chains, such as bipyridylalanine 1,2 offer different 
structural binding motifs to the canonical amino acids. This allows the possibility of building up very 
different metal active sites to those found in natural metalloproteins, enabling new-to-nature chemistry 
to be introduced to the biological toolbox.3 Here I will present my group’s work on expanding the 
genetic code to include unnatural amino acids 2 and 3, and how we have used these amino acids 
alongside bipyridylalanine to design artificial metalloenzymes (Figure 1). I will cover both structural 
studies and their applications in transition metal catalysis. 
 

 
Figure 1. Production of novel metalloproteins containing unnatural amino acids 1 to 3, via 

genetic code expansion using amber stop codon suppression in E.coli. 
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Organofluorine chemistry is a fascinating research field in rapid expansion. Beyond the strong interest 
that represents fluorinated molecules in materials science, pharmaceuticals and agrochemicals as 
well as modern drug design,1 innovation is still required to push further the boundaries of knowledge 
in this appealing research field and to achieve new synthetic challenges.2  Besides, the development 
of more sustainable transformations and among them, reactions based on transition metal catalyzed 
direct C-H bond functionalization have reshaped the field of organic chemistry over the last decade.3 
In that context, aiming at designing new tools to access original fluorinated molecules, our group 
developed approaches combining organofluorine chemistry and transition metal catalyzed C C-H 
bond functionalization.4 Such advances were possible thanks to the design of original reagents. 5 
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To counteract the increasing complexity, diversity, and volume of Sanofi’s small molecule pipeline, we 
established the High-Throughput Innovation Technologies (HIT) team within Process Chemistry to 
develop platforms that utilize high-throughput experimentation (HTE)1 to drive high-quality route 
identification and route development. Key priorities for our team are to 1) rapidly and thoroughly 
evaluate route scouting ideas for new programs; 2) use our parallel kinetics2 and solubility platforms 
to provide critical process data and support scale-up and modeling; and 3) lower the barrier to the 
adoption of lab automation and parallel experimentation among process development scientist and 
engineer end-users. To advance our ambitions, we have developed workflows for metal-catalyzed 
transformations, high-pressure reactions, and photocatalyzed reactions. To improve the sustainability 
of our manufacturing routes, we also incorporate base-metal screening and biocatalytic 
investigations. Our efforts to strengthen the culture of HTE across the department, including end-user 
trainings and a customized laboratory notebook and data management system, are currently 
underway.  
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Novel reactivities of organoboron reagents for the formation of covalent bonds at a carbon 
atom with sp3- or sp2-hybridization are explored. New synthetic modalities that are based on 
electrochemical oxidation and transition metal catalyzed processes enabled the formation of 
C–heteroatom and C–C bonds with unprecedented efficiencies. Ultimately, general synthetic 
platforms towards the formation of hindered linkage or the introduction of stereochemical 
information at a C(sp3)-based reaction center has been established.  
 

 

 
 

Figure 1. Activation of C–B Bonds 
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Sodium dependent glucose transporter 2 (SGLT2) inhibitors 1 have received keen att

ention as a diabetes drug due to high efficacy and safety.1  Recent discoveries on addition
al potency of those drugs for nephritis and heart failure have enhanced the importance as 
a therapeutic agent significantly.2  SGLT2 inhibitors have b-C-glycoside motif as a commo
n structure where sugar unit is combined with aromatic substituent by b-orientation.3  Prev
ious synthetic methods have a serious issue of need of cryogenic conditions (-78 oC) to in
stall the characteristic structure itself.  To address the drawback, we have developed new 
synthesis which can be undertaken at ambient temperature for the key step.4 The method 
consists of a new ketone synthesis from 2 to 3 through Fukuyama coupling reaction.  The 
mild conditions enable use of labile acetyl protecting group. 
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The synthesis of laser dye molecules via iterative one-pot Suzuki-Miyaura coupling (SMC) 
involves multiple reaction components and is further complicated by multiple potential side 
reactions, making their optimization incredibly difficult and time consuming (Figure 1). We 
have developed an adaptive, automated synthesis tool that utilizes online high-performance 
liquid chromatography to monitor the progress of a reaction in real time. This live monitoring 
allows enables the system to execute actions based on the reactivity of different substrates. 
The platform also utilizes the temporal reaction profiles combined with component 
information such as ultraviolet spectroscopy and polarity to determine the identity of 
side/decompositions products, intermediates, and other reaction components, bypassing the 
need for isolation and quantification of unknown species. By combining the real time decision 
making and component identification, we analyzed and optimized the synthesis of three laser 
dyes via iterative one-pot SMC from nine chemically distinct starting materials. 
 

 

 
 
Figure 1. Assembly of organic laser molecules. a) building block, one-pot iterative coupling approach 

b) non-exhaustive list of potential undesired side products.  
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Controlled construction of congested stereogenic centers within acyclic systems represents 
an acute challenge in stereoselective organic synthesis. The main obstacle is the 
conformational flexibility of these organic frameworks compared to cyclic systems. An 
elegant solution to this problem involves introduction of stereocenters to cyclopropanes as 
highly strained carbocycles and subsequent selective ring opening.1 
Previously, we reported synthesis and 1,2-metalate rearrangement-mediated ring opening of 
polysubstituted borylated cyclopropanes by various alkyl-, aryl- and alkynyllithium reagents.2 
Here, we present a selective metal-halogen exchange-mediated ring fragmentation of 
cyclopropyl pinacolboranes exploiting the anion-stabilizing effect of the boronic ester moiety. 
This umpolung strategy represents an original approach to boron-stabilized carbanions. 
Subsequent reaction of these species with electrophiles provides various acyclic frameworks 
with high levels of diastereoselectivity.  

 
 

 
Scheme 1. 
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Homogeneous catalytic carbonylation reactions performed in the presence of various nucleophiles 
are excellent synthetic tools for the production of valuable fine chemicals, such like amides, esters, 
thioesters. Several studies have been reported for the utilization of simple amines and alcohols as 
model reactants, only a few works focused on the investigation of carbonylation reactions in the 
presence of homo- and even heterobifunctional nucleophiles. However, the application of the latter 
open alternative and easier synthetic routes for the construction of complex molecular structures. 
Our investigation was focused on the selective transformation of iodoarenes with various 
aminoethanols to get the corresponding amides or amide-ester derivatives. It was showed, that the 
substrate-nucleophile ratio and the base have crucial role on product distribution. Furthermore, 
interesting correlation was found between the substituents of the aryl iodides and the rate of 
amino/alkoxy-carbonylation reactions. Additionally, trifunctional nucleophiles were also tested with 
various iodobenzene amounts. Surprising results showed increased affinity on ‘tricarbonylated’ 
products, which phenomena were explained by mechanistic considerations. 
Additionally, some selected aminoethanols were reacted with ortho-dihalogenated aromatic 
substrates under carbonylation conditions. Iodo- and bromo-aromatic structures showed diverse 
reactivity and selectivity with the selected heterobifunctional nucleophiles. As it was expected, 
iodobenzenes and amines were much more reactive compared to bromo analogues and O-
nucleophiles, but latter structural items are also suitable coupling partners and showed interesting 
behaviour under the applied conditions. 
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Figure 1. Carbonylation reaction of aryl halides in the presence of bifunctional N,O-
nucleophiles 
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Prized for their ability to generate chemical complexity rapidly, catalytic carbon–hydrogen (C–H) 
activation and functionalization reactions have enabled a paradigm shift in the standard logic of 
synthetic chemistry. Directing group strategies have been used extensively in C–H activation 
reactions to control regioselectivity with transition metal catalysts. Compared to oxygen and nitrogen 
atoms, phosphorus coordinates strongly with metals and is therefore challenging to use as a director 
in catalytic C−H activation (Figure 1). During the past five years, substantial progress has been made 
by our group in ligand modification through P(III)-directed C−H activation.1-2 We have also 
demonstrated the viability of using phosphorus directing groups for the site-selective C−H 
functionalization of indoles at the benzene core.3-6 In addition, enantioselective C–H activation 
directed by a phosphorus center to rapidly construct libraries of axially chiral phosphines has also 
been uncovered through dynamic kinetic resolution. This reaction mode significantly expands the pool 
of enantiomerically enriched functional phosphines, some of which have shown excellent efficiency 
for asymmetric catalysis. 

 

 
 

Figure 1. Examples of P(III)-directed C–H activation 
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Over the last decade, we have been involved in the implementation of organometallic catalysis to the 
development of more sustainable synthetic radical chemistry. We have notably introduced 
hypercoordinated bis-catecholato silicates as versatile sources of alkyl radicals upon visible light 
photocatalysis.[1] Using Ir(III) as catalytic photooxidant, or an organic dye, a series of alkyl radicals, 
including primary ones can be generated and engaged in intermolecular reactions. Interestingly, the 
photocatalyzed process can be merged with nickel-catalyzed Csp2-Csp3 cross-coupling reactions (see 
Figure 1) 
In the same vein and following our interest in gold catalysis, our recent efforts in photoredox/gold dual 
catalysis will also be presented.[2] In the context of these studies, we have evidenced the first 
examples of photosensitized oxidation additive to a gold(I) complex leading to Csp2-Csp cross-
couplings.[3] Recently, photocatalyst-free conditions have been applied to the synthesis of indoles.[4] 
 

 
 

 
Figure 1. Dual photoredox/Ni and photosensitization/Au catalysis 
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Asymmetric catalysis with chiral Rh diene complexes has received increasing interest over the last 
two decades.1 Taking inspiration by enzymes, researchers have recognized the important role of 
confinement on catalytic reactions with respect to reaction rate, yield, mechanism, product ratio, 
chemo- and regioselectivity, diastereomeric and enantiomeric ratio.2-4 However, confinement effects 
have only been rarely exploited in Rh diene catalysis. Therefore, we studied the Rh-catalyzed 1,2-
addition of phenylboroxine to N-tosylimines as a benchmark reaction both under liquid confinement in 
microemulsions5,6 as well as solid confinement in mesoporous silica SBA-157 and silica-inverse opals 
SiO2-IO.8 The role of polarity (and charge), domain or pore size, steric bulkiness and flexibility of 
linkers between catalyst and support in such confined catalyses will be discussed and methods to 
determine the accessibility and spatial distribution of Rh diene complexes in pores will be presented.9  

  
Figure 1. Asymmetric catalysis with chiral Rh diene complexes under solid and liquid 

confinement 
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The ability of transition metal catalysts to mediate new bond forming reactions has had a dramatic 
impact on modern molecular synthesis. Nevertheless, a central feature in these reactions is need to 
balance of reverse operations on the catalyst so it is regenerated at the end of each cycle of product 
formation, which can limit catalytic activity and the scope of many transformations. This talk will describe 
our efforts to address these challenges by introducing alternative, often renewable, energy sources into 
catalysis, and from this create new bond forming reactions. These include using visible light excitation 
directly on active palladium catalysts to drive the oxidative addition/reductive elimination cycle in 
coupling reactions independent of the classical limits in thermal catalysis, or the use of electrochemistry 
to change the nature of the metal throughout the cycle.1 Combining these with the favored energetics 
of carbon monoxide conversion to carboxylic acid derivatives can be used to drive the build-up of 
reactive products from stable reagents. The use of this chemistry to create ambient temperature and 
general catalysts for carbonylation reactions, multicomponent transformations, acyl halide or even 
super-electrophile formation, or new avenues to C-H bond functionalization, will be discussed, as will 
the mechanistic origins of these influences, and their ability to enable the use of earth abundant 
catalysts in traditionally precious metal catalyzed reactions.   
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While a plethora of catalysts have been developed over the years to promote hydrosilylation 
reactions, homogenous platinum-based catalysts such as Speier’s catalyst and Karstedt’s catalyst are 
still the workhorse for hydrosilylation processes.1 Karstedt’s catalyst is usually manufactured at scale 
by using either chloroplatinic acid or platinum halide as the platinum source.2 The synthesis of 
Karstedt’s catalyst from anhydrous, low valent PtCl2 requires the presence of a polar solvent 
(methylethylketone, MEK) and divinyl tetramethylsiloxane (dvtms) as the reagent. Despite being 
practiced over several decades, the reaction suffers from several limitations such as low conversion 
(poor yield of the catalyst), long reaction time (8-10 hours), and thermal decomposition of the catalyst 
over longer period, to name a few. Through an approach that relies mostly on mechanistic insights 
and systematic investigation of all reaction parameters, we identified that pre-soaking or milling PtCl2 
in MEK at room temperature led to the formation of crystalline Pt6Cl12·(MEK)1.5 material which 
drastically improved the reaction conversion (4 hours, 99% conv.). As our understanding of the 
mechanism of this reaction improved, we discovered that small amounts of PtCl2(enone) complexes 
were formed in-situ from the pre-heated mixture of PtCl2 and MEK in absence of dvtms. These enone 
compounds were likely formed via aldol condensation of MEK, followed by a dehydration reaction. We 
have since found that these β, γ -enones are superb process additives and can be independently 
added (as low as 1wt%) to improve the reaction rate (<4 hrs) and conversion (>98% conv., Figure 1). 
Computational studies further suggest that enones behave as phase-transfer additives. Once MEK 
disrupts the PtCl2 lattice, enones facilitate the dissolution process via complexing with the individual 
molecular PtCl2 moieties, thus stabilizing them in the homogenous phase. In addition, the calculated 
energy landscape suggests that once the solid PtCl2 is brought into the homogeneous liquid phase, 
the formation of the Karstedt’s catalyst itself is energetically downhill, overcoming only moderate 
activation barriers for a Pt(II) to Pt(0) reduction process. The details of these studies will be presented 
during the talk. 
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Figure 1. Enone as a process aid for synthesis of the Karstedt’s catalyst. 
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We have developed straight-forward methods to prepare new amine-, imidazole-, and free N-
heterocyclic carbene (NHC)- derivatives of the recently reported push-pull dye 1,2,3,5-
tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN). Intersystem crossing from the excited singlet- 
to triplet-states of 4-CzIPN is facile, and the triplet state undergoes useful photoreactions. We utilize 
our new dyes in homogeneous and heterogeneous photocatalysis. For heterogeneous systems, we 
bond the dyes to ITO, TiO2, and carbon supports via either diazonium grafting, coordination of the 
free NHC group to TiO2, or most recently, by direct electropolymerization. For homogeneous systems, 
we have prepared Mn- and Re- complexes with the imidazole- or NHC- dyes and utilized them for the 
visible-light photoreductions of CO2. The detailed electrochemistry and photochemistry of the Mn- and 
Re- complexes will be presented.   
 

 

   
  



57 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

ST 17 

 
Homogeneous and Heterogeneous Catalysts for Alkene Isomerization and 

Hydrosilylation 
 

Amanda K. Cook*a 
aUniversity of Oregon 

Email: akcook@uoregon.edu 
 

The mechanism of hydrosilylation has been extensively studied when using platinum catalysts,1 and 
much less is known when using palladium and nickel. Relevant to palladium-catalyzed hydrosilylation 
and C-Si cross coupling reactions, we have elucidated the mechanism of a proposed elementary step 
of the catalytic cycle, oxidative addition of Si–H and Si–X bonds to Pd(0),2,3 and we have shown that 
trends in oxidative addition are transferrable to catalysis. Additionally, we have developed methods 
for nickel-catalyzed alkene isomerization and hydrosilylation, which forms branched organosilanes in 
excellent selectivity over the linear organosilanes.4 Mechanistic work supports a two-electron pathway 
for the nickel-catalyzed reactions.  
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Figure 1. Oxidative addition of Pd to Si-H and Si-X bonds, Pd-catalyzed alkyne 
hydrosilylation and alkene isomerization, and Ni-catalyzed alkene isomerization and 

hydrosilylation. 
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The direct transfer of a reactive nucleophilic CH2X element into an existing linkage enables the formal 
introduction of this moiety with the precisely defined degree of functionalization.1 Upon the fine tuning 
of the reaction conditions governing the transformation, the initial homologation event can serve as 
the manifold for triggering unusual rearrangement sequences leading to complex architectures 
through a unique synthetic operation.2 The direct – full chemoselective - conversion of a ketone into 
the homologated all-carbon quaternary aldehyde (via a),3 the telescoped homologation of imine-
surrogates to quaternary aziridines (via b)4 and bis-trifluoromethyl-β-diketiminates (via c)5 will illustrate 
these unprecedented concepts. Notably, also sulfur-centered electrophiles are amenable substrates 
for homologations, thus providing (un)-symmettrycal dithioacetals (via d).6 Cognizant of the inherent 
difficulties of using β-substituted metalated reagents, we developed a formal double C2-homologation 
strategy enabling the sequential insertion of two -CH2- units for assembling four-membered cycles 
through a single synthetic operation (via e).7 Furthermore, the one-step mono-fluoromethylation of 
carbon electrophiles with extremely labile fluoromethyllithium reagents will provide a novel entry to 
valuable fluorinated building-blocks without the needing of using protecting elements for fluoro-
containing carbanions (via f).8 

c)  Homologation of imine-surrogates to bis-trifluoromethyl-β-diketiminates
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The use of N-heterocyclic carbenes (NHCs) to modify homogeneous metal catalysts is widespread 
since the high metal–NHC bond strength renders high oxidative and chemical stability to the resulting 
metal complexes. Recent work has shown that these ligands are also powerful choices for the 
modification of metal surfaces.1 We will describe the modification of planar metallic surfaces with 
NHCs, where the nature of the surface overlayer is strongly dependent on the structure of the NHC.2 
Similarly, NHCs are shown to be useful new ligands for the stabilization of metal clusters, with the 
structure of the cluster being strongly influenced by the nature of the NHC.3 The unique properties of 
these NHC-stabilized clusters, including their photophysical properties, stability and catalytic activity 
will be addressed.  

 
Figure 1. N-heterocyclic carbenes as ligands for molecules, clusters and surfaces. 

 
References 
[1] a) Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M., N-

Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119, 4986-5056; b) Engel, S.; 
Fritz, E. C.; Ravoo, B. J., New trends in the functionalization of metallic gold: from organosulfur 
ligands to N-heterocyclic carbenes. Chem. Soc. Rev. 2017, 46, 2057-2075. 

[2] Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, 
Z.; Kraatz, H.-B.; Mosey, N. J.; Seki, T.; Keske, E. C.; Leake, J. D.; Rousina-Webb, A.; Wu, G., 
Ultra Stable Self-Assembled Monolayers of N-Heterocyclic Carbenes on Gold. Nature Chem. 
2014, 6, 409-414. 

[3] Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; 
Yousefalizadeh, S.; Calhoun, L. A.; Stamplecoskie, K. G.; Häkkinen, H.; Tsukuda, T.; Crudden, 
C. M., Robust, Highly Luminescent Au13 Superatoms Protected by N-Heterocyclic Carbenes. J. 
Am. Chem. Soc. 2019, 38, 14997-15002. 

 
  



60 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

 

ST 19 

 
Enantioselective C-H Arylation Based on Umpoled Indoles 

 
Nguyen H. Nguyen,a Seunghoon Shin,*a  

aDepartment of Chemistry, Hanyang University 
Email: sshin@hanyang.ac.kr 

 

Due to the importance of heterobiaryl synthesis in bioactive compounds, chiral ligands, and materials 
chemistry, their synthesis through C-H/C-H coupling has seen remarkable advances. Notable 
approaches include hypervalent iodine chemistry, electrochemical synthesis, photoredox catalysis, 
and organocatalysis.1,2 Despite these advances, control over chemo- and regioselectivity as well as 
atropselectivity remains very challenging.   
 
We recently reported a C-H/C-H biaryl coupling between phenols and N-carboxyindole (1), where 
cross-coupling occurred in an exclusive chemo- (absence of biphenols), and regioselectivity (ortho-to 
phenols).3 Herein, we developed an enantioselective C-H/C-H heterobiaryl coupling, by employing 
Cu(I)/chiral bisphosphine. Through an extensive screening of ligands, we found a system with 
Cu(CH3CN)4(PF6)/L1 can deliver the desired atropisomer in excellent yield (upto 96%) with good 
enantioselectivity (up to 95:5 er).4 The current Cu(I)/L1 system turned out to be exceptionally general 
in terms of phenolic coupling partners. The utility of the products could be demonstrated in the 
synthesis of a new type of axially chiral monophosphine ligands.   
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Figure 1. Atropselective arylation of N-carboxyindoles 
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Abstract:  During the last century direct functionalization of inert bond such as C-C bond has been 
largely ignored due to its high bond strength and extreme inertness. Since the beginning 21st century 
there has been renewed interest in functionalizing inert bonds through transition metal catalyst for the 
synthesis of many useful organic molecules. As compared to C-H bond functionalization, C-C bond 
functionalization is far more difficult due to the high thermodynamic barrier in breaking the C-C bond. 
One useful strategy to overcome high thermodynamic barrier is to use strained ring systems as 
substrates.1 In our group we have employed this strategy2-5 for the synthesis of heterocycles and 
useful organic scaffolds. A brief overview of the works completed so far and our ongoing works will be 
presented (Figure 1). 
.  
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Figure 1. C-C bond activation and functionalization of cyclopropenone and cyclopropanol. 
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Our research integrates chemistry, computer-based design, synthesis, biology, medicinal chemistry 
and material science into studies directed at unsolved synthetic, biological and clinical problems. Over 
the years, these studies have led to the introduction of numerous metal-catalyzed 2-, 3-, and 4-
component cycloadditions including 5+2, 4+2, 3+2, 4+4, 6+2; 2+2+1, 2+2+2, 4+2+1, 4+2+2, 5+2+1; 
and 2+2+2+2, 5+2+1+1 cycloadditions; serialized versions (e.g., 5+2/4+2; 5+2/Nazarov; 4+2/4+2) 
and metal-catalyzed reactions in water (Synlett 2003) and even in cells (Bioconj.Chem. 2016). Some 
of these studies have figured in our function-oriented synthesis (FOS) philosophy which seeks step- 
and time-economical functional outcomes (cures, vaccines, catalysts, diagnostics, imaging agents, 
etc) through synthesis-informed structure design (e.g., Current Drug Discovery Tech 2004, Accts 
2008, NP Reports 2014, JOC 2020 15116). Our FOS studies have more recently focused on 
HIV/AIDS eradication (Virology 2023 on line, Nature Chem 2022, 1421; Nature Commun. 2022, 
13:121; Cell Reports Medicine 2020, 100162; Blood Advances 2020, 4244; PNAS 2020, 10688; 
Science 2017), Alzheimer’s disease and neurological disorders (Cell Chem Biol 2021, 537; ACS 
Chemical Neuroscience 2020, 1545), antigen-enhanced CAR T and NK cell therapies (Nature Chem. 
2022, 1421; Nature Commun 2020, 1879), resistant and metastatic cancer (Cancer Research 2019, 
1624; Gynecologic Oncology 2012, 118), therapeutic and prophylactic vaccination and immuno-
oncology including a cure for cancer in mice (Proc. Natl. Acad. Sci. USA  2018, E9153) and a Covid 
vaccine (ACS Central Science 2021,1191), resistant infectious diseases (JACS 2018, 16140; ACS 
Chemical Biology  2019, 2065; Antimicrob Agents Chemother 2021, 65:e02416), multiple sclerosis 
and neurological disorders (Cell Chemical Biology 2021, 537) and new delivery systems for 
polyanions (e.g., RNA, DNA, CRISPR-Cas, etc: PNAS 2017 E448, 2018 E5859; JACS 2019 8416; 
Bioconj Chem 2023; Nature Biotech, 2022; Biomacromol. 2022). This lecture will provide an overview 
of the above topics.  
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Dopamine is an important neurotransmitter in human brain. Any sensor that is used to monitor 
dopamine is in high demand.1 In this report, I will show synthesis of a potential fluorescent probe for 
sensing dopamine. The synthesis of the fluorescent probe 3 involves four steps. (Figure 1) The first 
step is to convert 1-bromopyrene to pyrenylboronic acid through lithium-halogen exchange reaction. 
The second step is to undergo Suzuki Cross-Coupling reaction of pyrenylboronic acid with 2,6-
dibromopyridine in the presence of Pd(OAc)2 catalyst to form compound 1. The third step is to undergo 
Suzuki Cross-Coupling reaction of compound 1 with 2-(2-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane in the presence of Pd(OAc)2 catalyst to form compound 2. The last step is to convert 
the bromo group of compound 2 to a boronic acid group through lithium-halogen exchange reaction, 
forming the final product 3. 
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Figure 1. Synthesis of a fluorescent probe for sensing dopamine. 
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Amine-bis(benzothiazole phenol) ligands, C1NNBiBTHP-H2 and CLNNBiBTHP-H2 ligands, 
were designed for yttrium complexes with analog structures. A series of nitrophenolate (NP)-
type of ligands possessing R substituents with variable electronic properties (R= NO2, Cl, H, 
CH3) on ortho and/or para position attached to the phenolate rings have been selected as 
secondary ligands for complexes syntheses. The syntheses, structures, and catalytic 
properties for lactones polymerization of ten novel yttrium complexes, 
[Y(C1NNBiBTHP)(NP)(MeOH)] (1-5) and [Y(CLNNBiBTHP)(NP)(MeOH)] (6-10) where the 
secondary ligand NP = 2,4-dinitrophenol (1 and 6), 2,5-dinitrophenol (2 and 7), 2-nitrophenol 
(3 and 8), 4-chloro-2-nitrophenol (4 and 9) and 4-methyl-2-nitrophenol (5 and 10). All the core 
structures and coordination geometries for complexes 1-10 were isostructural. All complexes 
were demonstrated to be active catalysts for lactide (LA) polymerization, and the catalytic 
performance for these complexes was compared. Comparing a series of nitrophenolate co-
ligands in two different ligand systems, we presented the first example to study the 
correlation between electronic effect of the ligands and catalytic properties for mononuclear 
rare-earth complexes. 
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An increasing number of reports appearing over the last two decades have introduced efficient 
nickel(II)-catalyzed methodologies for the direct functionalization of relatively inert C−H bonds. In vast 
majority of these functionalization strategies, the nickellacyclic intermediates generated at the C−H 
metallation step are allowed to react in-situ with various reagents to furnish the targeted 
functionalized product. On the other hand, isolation of such intermediates represents an opportunity 
to systematically explore their reactivities. 
In this context, our group has developed facile synthetic routes to nickellacyclic intermediates via 
orthometalation of the aryl phosphinites ArOP(i-Pr)2.1 Isolation of such compounds has allowed us to 
study their reactivities with various substrates as simple models for C−H functionalization processes 
alluded to above.2 This presentation will highlight the reactivities of a series of dimeric intermediates 
obtained from C–H nickellation of aryl phosphinites with hydroxylamines, TEMPO, and a triazole.  
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Figure 1. Formation of Ni-TEMPO, Ni-imine and Ni-triazole complexes. 
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Luminescent Cu(I) complexes have been intensively studied due to the superior photophysical 
properties arising from the fast and efficient conversion of both singlet and triplet energies into 
photons.1 However, the developments of red-emitting Cu(I) complexes still face low photoemission 
quantum yield (PLQY) and low color purity due to the structural flexibility of the Cu(I) complex. The 
reports on red-emitting Cu(I) complexes with high PLQY above and narrow full-width at half maximum 
(FWHM) (< 100 nm) are still limited.2 We consider that the structural rigidity by introducing ring strain 
offers a solution for improved emission. Inspired by our previous works on rigid 1,4-dihydropentalene 
congeners featuring high structural rigidity endowed from fused five-membered rings3 and the 
emissive properties of Cu(I) trisphosphine (TP) complexes,4 we herein report the design of chelating 
bis- and trisphosphines incorporating two 1H-indene backbones as ligands. The bidentate and 
tridentate indene-based ligands were synthesized in four steps from commercially available materials 
utilizing the stepwise, regioselective lithiation-electrophile trapping of diiodoindene. These ligands 
formed stable complexes with Cu(I) halides and the complexes showed orange to red emission. 
Especially, the Cu(I) complexes of trisphosphine of 1H-indene backbones (ITP) possessing four fused 
five-membered rings chelating Cu(I) generate a rigid skeleton. The structural strain in 1H-indene-
based Cu(I) complexes was demonstrated by the reduced P–C=C bond angles after coordination and 
the molecular rigidity has been supported by TD-DFT calculations, in which ITP-CuX showed almost 
minimum structural reorganization after excitation. The ITP-CuX showed narrow photoluminescence 
spectra peaking at 628 nm with FWHM of 56 nm and a PLQY of 28 %, presenting a very small FWHM 
among known red emitting Cu(I) complexes reported, and a high PLQY among the red-emitting Cu(I) 
complexes. This work demonstrated strain-based structural rigidification in ligand design for 
enhancing luminescence properties in metal complexes. 
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Phosphoramidite is one of the most promising ligand structures in transition-metal-catalyzed 
asymmetric reactions. Taking advantage of its high modularity, a variety of chiral phosphoramidite 
ligands have been synthesized to achieve the development of precise asymmetric catalysts. We have 
developed chirality-switchable helical polymer ligands by attaching achiral coordination units onto  
helical poly(quinoxaline-2,3-diyl)s (PQXs), whose helicity can be controlled by solvents.[1] In this 
study, a helically chiral polymer ligands bearing phosphoramidite units (PQXpham) were prepared by 
post-polymerization functionalization of PQXs bearing achiral diol units. PQXpham served as a 
chirality-switchable ligand in copper-catalyzed asymmetric conjugate addition reactions, giving either 
of the enantiomeric products with good enantioselectivities owing to the solvent-dependent screw-
sense induction to the main chain of PQX. Control experiments using low-molecular-weight model 
ligands suggested that the enantioselection was solely dependent on the induced axial chirality 
regardless of the configuration of P-stereogenic center of the phosphoramidite moieties. 
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Figure 1. Cu-catalyzed asymmetric conjugate addition reactions using a chirality-switchable 

ligand 
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N-Heterocyclic carbene (NHC) ligands are known for their strong electron-donating ability, especially 
in transition metal complexes. In addition, the substituent on NHC ligands can be easily changed, 
allowing the development of a wide variety of NHC ligands.[1a] Recently, asymmetric catalysis using 
NHC ligands has attracted considerable attention. Many asymmetric NHC ligands with central chirality 
have been developed; however, examples of NHC ligands with only planar chirality are limited.[1b,c] 
Since ferrocene can easily introduce planar chirality, we have focused our attention on synthesizing 
planar chiral NHC ligands using ferrocene. 
The planar chiral ferrocenyl triazolylidene ligands we have developed showed good stereoselectivity 
and strong electron-donating ability.[2] However, the ligands required multiple synthetic steps for 
synthesis. In addition, the syntheses of optically active ferrocenyl azides and ferrocenyl alkynes were 
necessary to form triazolylidenes for the click reaction. To solve this problem, we planned to 
synthesize new imidazolylidene ligands from optically active ferrocenyl amines via diimines.[3] In this 
study, we synthesized a planar chiral ferrocenyl imidazolylidene ligand from a single optically active 
ferrocenyl amine. Furthermore, we successfully synthesized rhodium and iridium complexes with the 
new NHC ligand. The catalytic activity of the rhodium complexes was evaluated by the hydrogenation 
of olefins. We also synthesized iridium-carbonyl complexes to calculate the Tolman electric parameter 
which is a measure of the electron-donating ability of the ligands. These results revealed the unique 
properties of planar chiral ferrocenyl imidazolylines. 

 

 
 

Figure 1 The present work. 
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The asymmetric ruthenium-catalyzed reductive amination employing ammonia and hydrogen to 
primary amines is a promising access to important chiral building blocks. After we demonstrated the 
capability of our catalyst to perform the chemo- and enantioselective reaction while using simple 
ammonia gas as a reagent, one of the most attractive and industrially relevant nitrogen sources, the 
mechanism of this reaction was investigated by means of density functional theory. We found a viable 
pathway, which explains the observed trends and magnitude of enantioselectivity through the halide 
series in good agreement with the experimental data. The in-depth investigation of substrate 
conformers during the reaction turned out to be crucial in obtaining an accurate prediction for the 
enantioselectivity.[1] Subsequently, a predictive model based on the ligand bite angle was developed 
to allow for a big data approach in screening different ligands. A selected set of ligands was tested 
and validated with DFT calculations and experiments, which revealed a variety of difficulties and 
drawbacks of such approaches. The examples strongly support our believes that computations and 
experiments work best and most effectively hand-in-hand with constant exchange and guided our 
next steps in enantioselectivity prediction to be more effective.[2] 

 
Figure 1. Lowest energy paths in the catalytic cycle leading to the R (black) and S (blue) 

enantiomer of 1-phenylethylamine.  
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Ligand screening is a crucial step in the development of transition metal catalysis, as it involves 
identifying the optimal ligand for a particular reaction from a large pool of candidate molecules. 
Conventionally, this process is performed through an experimental trial-and-error, which can be time-
consuming and resource-intensive. One of the ideal strategies for streamlining this process is an ab 
initio approach based on transition state theory (TST). This approach relies on quantum chemical 
calculations, rather than experiments, and aims to design optimal catalysts that results in the best 
energy profile for the desired reaction. However, the implementation of TST-based ligand screening 
remains challenging mainly due to the large number of potential ligands that need to be individually 
evaluated through quantum chemical calculations. To streamline this process, we have previously 
proposed a computational method called virtual ligand-assisted (VLA) screening.1 In this method, 
quantum chemical calculations are performed using virtual ligands which reproduce and parameterize 
the electronic and steric effects of real ligands. By optimizing the electronic and steric parameters of 
the virtual ligands to maximize the efficiency and/or selectivity of the desired reaction, the optimal 
features of ligands for the reaction can be rapidly identified. In this presentation, we report a case 
study of the VLA screening.2 The electronic and steric features of phosphine ligands that maximize 
chemoselectivity in the Suzuki–Miyaura cross-coupling (SMC) reaction of p-chlorophenyl triflate (1) 
were determined through quantum chemical calculations using virtual ligands, and several phosphine 
ligands were suggested to exhibit high chemoselectivity. Based on this suggestion, we successfully 
found that tri(1-adamantyl)phosphine and tri(neopentyl)phosphine show high to excellent selectivity 
for the C–Cl bond activation. This case study suggests that the VLA screening strategy could be a 
useful tool for ligand screening. 
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In the last two decades, bis(phosphinite) Ir pincer complexes of the type [(RPOCOPR)Ir(H)(X)] 
{RPOCOPR = κ3-1,3-(OPR2)2-C6H3; R = organic substituent; X = H, Cl} have been applied as versatile 
catalysts in many organic transformations.1a A prominent example in this context is the transfer 
dehydrogenation of alkanes, which was carried out by the group of Brookhart using complexes of the 
type [(RPOCOPR)Ir(H)(Cl)].1b 
We were recently able to synthesize the corresponding Ir(III) bis(thiophosphinite) complexes 2-R from 
suitable Ir precursors in refluxing toluene and an atmosphere of H2.2 We found that in the case of 
1-iPr H2 is crucial for successful C‒H activation, whereas 2-tBu could be synthesized in absence of 
H2 under reflux as well, but only in low yields. 
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Figure 1. Synthesis of new Ir(III) bis(thiophosphinite) complexes and application in alkyne 
activation and dimerization. 
 
Moreover, we were able to activate differently substituted, terminal alkynes 3-R’ with 2-iPr, yielding 
the first Ir(III) bis(thiophosphinite) vinyl pincer complexes 4-R’. Because of the scarcity of 
Ir(III)-catalyzed alkyne dimerizations3, we investigated the catalytic hydroalkynylation of 3-R’. 
Surprisingly, quantitative conversion is only found for 3-TMS, giving selectively (Z)-enyne 5-TMS and 
traces of 1,2,3-triene 6. This reaction even proceeds at room temperature, which is in stark contrast to 
terminal aryl alkynes, where either no or only very little conversion (3-Ph: 20–30% conversion) was 
found. 
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Novel reactivities of organoboron reagents for the formation of covalent bonds at a carbon 
atom with sp3- or sp2-hybridization are explored. New synthetic modalities that are based on 
electrochemical oxidation and transition metal catalyzed processes enabled the formation of 
C–heteroatom and C–C bonds with unprecedented efficiencies. Ultimately, general synthetic 
platforms towards the formation of hindered linkage or the introduction of stereochemical 
information at a C(sp3)-based reaction center has been established.  
 

 

 
 

Figure 1. Activation of C–B Bonds 
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Especially in the area of reactive organometallics it is essential to get information about the involved 
species, in the solid-state but, even more important, in solution, since structural changes in solution like 
solvation and aggregation determine the reactivity and selectivity in organic syntheses and the product 
range. s-Block organometallics are readily applied in numerous preparative protocols, ranging from 
deprotonation of weakly acidic reagents to C–C bond formation in organic group transfers as well as in 
industrial large-scale late-stage transformations. The structure-reactivity-relationship is still the Holy 
Grail to be found in this class of compounds because the metallated species determine the composition, 
yield and stereo chemistry of the product. Charge density investigations can provide insight into the 
bonding and reactivity of these labile molecules. For example, picolyllithium [(C6H6NLi·NC6H7)]2[1] is an 
excellent candidate for a detailed structure-reactivity-relationship investigation of carbanion (A) vs. 
amide (D).[2]  
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On the other hand, structural information from the solid state would not necessarily correctly describe 
the reactive species in the course of the reaction sequence. Here DOSY NMR bridges the gap.[3] The 
talk will exemplify this with the Turbo Hauser base iPr2NMgCl·LiCl in THF and the influence of LiCl on 
the Schlenk-Equilibrium.[4] 

Cl
Mg

B
Mg

B Cl

Cl

Cl B

B B
Mg

THF Cl

ClB

B
Mg

THF

Cl
Mg

Cl

THFB

BB

Li
THF

THF

THF
Li

THF Cl

Cl
Li

THF

THF

LiLi
THF

THF THF

THF

+

T > -50°C

T < -50°C

+

 

References 
[1] Ott, H.; Pieper, U.; Leusser, D.: Flierler, U.; Henn, J.; Stalke D. Carbanion or amide? First Charge 
Density Study of Parent 2-Picolyllithium. Angew. Chem. Int. Ed. 2009, 48, 2978-2982. 
[2] Engelhardt, F.; Maaß, C.; Andrada, D. M.; Herbst-Irmer, R.; Stalke D. Benchmarking lithium amide 
versus amine bonding by charge density and energy decomposition analysis arguments. Chem. Sci. 
2018, 9, 3111-3121. 
[3] Neufeld, R.; Teuteberg, T. L.; Herbst-Irmer, R.; Mata, R. A.; Stalke, D. Solution Structures of 
Hauser Base iPr2NMgCl and Turbo-Hauser Base iPr2NMgCl•LiCl in THF and the Influence of LiCl on 
the Schlenk-Equilibrium“ J. Am. Chem. Soc. 2016, 138, 4796-4806. 
[4] Neufeld, R.; Stalke, D. Accurate Molecular Weight Determination of Small Molecules via DOSY-
NMR by using External Calibration Curves with Normalized Diffusion Coefficients. Chem. Sci. 2015, 
6, 3354-3364. 
  



74 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 12 

(n-Bu)4NBr-Promoted N2 Splitting to Molybdenum Nitride 

Dan-Dan Zhai1, ‡, Shuo-Qing Zhang2, ‡, Si-Jun Xie1, Rong-Kai Wu2, Feng Liu1, Zhen-Feng 
Xi3, Xin Hong2,4,5*, and Zhang-Jie Shi1* 
 

1Department of Chemistry, Fudan University, Shanghai, 200438, China.  
2Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key 
Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China. 

3Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic 
Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, 

Peking University, Beijing, 100871, China. 
4Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School 

of Science, Westlake University, Hangzhou, 310024, China. 
5Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, 

Beijing 100190, PR China. 
 

Email: hxchem@zju.edu.cn; zjshi@fudan.edu.cn 
  

 

Splitting of N2 via six-electron reduction and further functionalization to value-added products is one of 
the most important and challenging chemical transformations in N2 fixation. However, most N2 
splitting approaches rely on strong chemical or electrochemical reduction to generate highly reactive 
metal species to bind and activate N2, which is often incompatible with functionalizing agents. 
Catalytic and sustainable N2 splitting to produce metal nitrides under mild conditions may create 
efficient and straightforward methods for N-containing organic compounds. Herein, we present that a 
readily available and nonredox (n-Bu)4NBr can promote N2-splitting with a Mo(III) platform. Both 
experimental and theoretical mechanistic studies suggest that simple X− (X = Br, Cl, etc.) anions 
could induce the disproportionation of MoIII[N(TMS)Ar]3 at the early stage of the catalysis to generate 
a catalytically active {MoII[N(TMS)Ar]3}− species. The quintet MoII species prove to be more favorable 
for N2 fixation kinetically and thermodynamically, compared with the quartet MoIII counterpart. 
Especially, computational studies reveal a distinct heterovalent {MoII−N2−MoIII} dimeric intermediate 
for the N≡N triple bond cleavage. 
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Figure 1.  
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Nucleosides are key building blocks in both DNA and RNA and play important roles in 
processes such as cell signaling and metabolism. Synthetic nucleoside analogues (NAs) can disrupt 
various biological processes and have been widely exploited in medicinal chemistry. NAs represent a 
large class of small molecule anti-viral drugs and play key roles in oncology and anti-fungal 
treatments. Furthermore, over the last two decades, there has been increased use of NAs in 
oligonucleotides where they have demonstrated profound effects on stability and potency.1 

One common site for modification in NAs is at the C4’-position on the ribose ring.2 Structural 
changes here can impact conformation, metabolic stability, and enhance membrane permeability. 
However, the synthesis of C4’-modified NAs is challenging and the production of these compounds 
often requires lengthy synthetic sequences and expensive chiral starting materials. Furthermore, the 
syntheses of C4’-modified NAs are generally not amenable to rapid diversification, which is a critical 
step in assessing structure-activity relationships.  

Our group has previously reported the synthesis of NAs using a key fluorohydrin 
intermediate, which can be accessed in two steps from inexpensive and achiral starting materials.3 
Here, we describe the controlled addition of Grignard reagents and the unique impact of the halide 
atom on the Grignard reagent in controlling the diastereoselectivity of these processes. In particular, 
we show that the addition of alkyl magnesium chloride reagents affords mixtures of 1,2-addition 
products while alkyl magnesium iodide reagents give predominantly the desired 1,3-syn diols. 
Furthermore, using DFT calculations and experimental results, we show how the halide impacts the 
Lewis acidity of an intermediate magnesium chelate. A subsequent cyclization event now provides 
access to correctly configured C4’-modified NAs. Exploiting this halide effect, we can now rapidly 
create diverse libraries of NAs to support drug discovery efforts. 
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Figure 1. Overview of controlled Grignard addition strategy for the synthesis of C4’-modified 

nucleosides. 
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Palladium-catalyzed cross coupling is a widely used tool in synthetic chemistry, that relies on 
catalytically active species generally classified as homogeneous or heterogeneous.1 Despite its 
widespread use, there has been much debate over the true nature of the catalytically relevant species 
and how reaction conditions influence pathways for both catalyst activation and decomposition.2,3 The 
mercury drop test is often used to distinguish between true homogeneous and heterogeneous 
catalysis. It is based on the assumption that elemental mercury will amalgamate with heterogeneous 
catalysts, eliminating their catalytic activity, while homogeneous catalytic species remain unaffected.4 

To better understand these reactions, pressurized sample infusion (PSI) combined with an 
electrospray ionization mass spectrometer (ESI-MS) was used to offer real-time reaction analysis, 
providing mechanistic data for catalytically significant reaction intermediates.5 When the mercury drop 
test was applied to a model cross-coupling reaction, the limits of the test became evident as Hg(0) 
reacted with a number of homogeneous Pd(0) and Pd(II) species through a variety of off-cycle 
reaction pathways. The use of PSI-ESI-MS gave valuable insights into the nature of palladium-
catalyzed cross coupling reactions, and the limitations of the mercury drop test, highlighting the 
importance of further research to better understand these reactions and their mechanisms.  
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Formation of onium salts is useful strategy to accelerate sigmatropic rearrangements.1 In this 
context, we envisioned an in-situ generation of the allyl vinyl sulfonium I (X = SAr) via gold-
catalyzed addition of allyl sulfides to propiolates (Figure 1).2 In contrast to the corresponding 
oxonium-based Claisen rearrangements (X = OR)3 where the scope of allyl group is very 
limited due to the facile C-O cleavage (formation of A and B), the sulfonium-based Claisen 
rearrangement tolerated a range of allyl substitutions. For example, skipped dienes 
containing quaternary centers could be obtained in good yield and high %ee. Allyl thioethers 
having cinnamyl group have presented significant challenge due to the facile allyl 
dissociation. We recently addressed this problem, by employing Au(I)/CyPF-Cy JosiPhos 
system. The products could be applied in the synthesis of optically active privileged 
oxacycles, such as 3-chromanones and 4H-chromenes.4  
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Peptide couplings have been a subject of investigation for over a century, and modern research 
seeks to discover new methodologies that minimize purification steps, minimize reagent expense, and 
decrease reaction times. The utility of thionyl fluoride (SOF2) in column-free amino acid couplings with 
minimal epimerization in one to two hours has been previously demonstrated.1 Here we report an 
improved protocol for nucleophilic acyl substitutions using the solution-stable SOF2 analog, N-
methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF), that can effect similar epimerization- 
and column-free amino acid couplings in comparable yields in 15 minutes at room temperature. The 
reaction proceeds through acyl pyridinium/imidazolium intermediates. In comparison, the use of 
sulfuryl fluoride (SO2F2) to construct peptide linkages leads to significant amounts of racemization.2 
The mild conditions utilized here are tolerant of both natural and unnatural amino acids, in addition to 
a wide variety of protecting groups. Biologically relevant peptides were accessed and derivatized 
using this method through sequential liquid phase peptide synthesis (LPPS). We also demonstrate 
that esters, thioesters, and acyl fluorides can be quickly accessed with this optimized method.    
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Figure 1. Rapid, column-free peptide coupling mediated by N-methylimidazolium sulfinyl 
fluoride hexafluorophosphate (MISF). 
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In order to stop global climate change, various efforts are also being made in the field of 
chemical manufacturing to reduce CO2 emissions. For example, the production of useful chemicals 
from CO2 or biomass resources have attracted attention as technologies that contribute to reduce 
CO2 emissions. Therefore, we considered that the chemical synthesis that contributes to CO2 
reduction can be achieved more effectively by combining these two technologies. 

In this study, we report that the synthesis of glycerol carbonate, a high value-added chemical, 
using glycerol, byproducts of biodiesel production, and CO2 with regenerable dehydrating agent CaO 
and Zn(OTf)2/1,10-phenanthroline catalyst (Figure 1).1 In this reaction, stirring with a magnetic stirrer 
bar was not suitable because the calcium component solidifies after dehydration, and mechanical 
stirring was preferable. Since CaO is a regenerable dehydrating agent, the only byproduct is 
practically H2O. In addition, the carbon atoms of biomass-derived glycerol are derived from CO2 fixed 
by plant photosynthesis, and thus all carbon atoms of glycerol carbonates synthesized by our method 
can be regarded as derived from CO2. Furthermore, this method can also be applied to the synthesis 
of other cyclic carbonates. 

We thank the Carbon Recycling Fund Institute (CRF) for partially supporting this research 
(2020 CRF Grant Program). 
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Figure 1. Research overview. 
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Cross-coupling reactions, such as the Suzuki-Miyaura reaction and Mizoroki-Heck reaction, are 
promising strategies in organic chemistry for connecting two fragments. However, they require 
prefunctionalization of substrates to prepare organohalide and optional nucleophiles. Oxidative 
coupling reactions are a more atom- and step-economical alternative that can bypass these steps.1 
Oxidative amination is one type of oxidative coupling and powerful tool for building carbon-nitrogen 
bonds.2 This reaction also involves dehydrogenative bond formation catalyzed by palladium 
complexes and uses molecular oxygen as a re-oxidant of the catalyst, making it a green catalysis 
system. While unsaturated hydrocarbons such as electron efficient and inefficient alkenes can be 
used as substrates for oxidative amination, there are limitations to their scope. For example, the use 
of 1,3-dienes, which are essential building blocks in organic synthesis to form natural products, drug 
candidates, and polymers, can produce problematic by-products that make the reaction intractable.  
In this study, we have developed a Pd-catalyzed aerobic oxidative amination of 1,3-dienes to form 
nitrogen-containing conjugated 1,3-dienes. This reaction enables the functionalization of simple 1,3-
dienes with aniline derivatives to form carbon-nitrogen bonds at the methyl position of the diene. The 
key catalytic intermediate is in situ generated palladium nanoparticles (Pd NPs). The Pd NPs were 
characterized using transmission electron microscopy and various X-ray techniques including X-ray 
absorption fine structure (XAFS), small angle X-ray scattering (SAXS) and X-ray diffraction (XRD).  
Mechanistic studies were conducted to investigate the behavior of the Pd NPs during the oxidative 
amination using XAFS and SAXS analysis. These studies showed that the Pd NPs underwent 
morphological changes due to the additions of substrates, providing important insights into the 
reaction mechanism. Furthermore, computational studies using density functional theory were 
employed to gain a deep understanding of the reaction mechanism for the Pd complex-catalyzed 
oxidative amination. 

 
 

Figure 1. Pd-catalyzed oxidative amination of 1,3-diene 
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Pyridones are powerful ligands that play an important role in biological processes, such as 
dihydrogen (H2) activation by [Fe] hydrogenase via a metal-ligand cooperative (MLC) mechanism.1 
Analogous cooperativity has also been demonstrated in biological systems for reactions such as 
alcohol (de)hydrogenation.1 Nevertheless, limited access to single-component complexes hampers 
mechanistic insight and application in more complex systems. This presentation will describe the 
synthesis, novel structural properties and hydroboration reactivity of highly electron-rich Ni(0) 
complexes supported by unsymmetric NHC-pyridone ligands.2 Both stoichiometric and control 
experiments suggest an important role of the pyridone oxygen in the formation of the hydroboration 
product. Preliminary work on the application of these Ni(0) complexes in functionalization of 
unactivated and naturally abundant electrophiles will be described, highlighting some unusual 
mechanistic outcomes.  
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The synthesis of laser dye molecules via iterative one-pot Suzuki-Miyaura coupling (SMC) 
involves multiple reaction components and is further complicated by multiple potential side 
reactions, making their optimization incredibly difficult and time consuming (Figure 1). We 
have developed an adaptive, automated synthesis tool that utilizes online high-performance 
liquid chromatography to monitor the progress of a reaction in real time. This live monitoring 
allows enables the system to execute actions based on the reactivity of different substrates. 
The platform also utilizes the temporal reaction profiles combined with component 
information such as ultraviolet spectroscopy and polarity to determine the identity of 
side/decompositions products, intermediates, and other reaction components, bypassing the 
need for isolation and quantification of unknown species. By combining the real time decision 
making and component identification, we analyzed and optimized the synthesis of three laser 
dyes via iterative one-pot SMC from nine chemically distinct starting materials. 
 

 

 
 
Figure 1. Assembly of organic laser molecules. a) building block, one-pot iterative coupling approach 

b) non-exhaustive list of potential undesired side products.  
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The amide is one of the most prevalent functional groups in all of pharmaceuticals, and for 
this reason, reactions that introduce the amide moiety are of particular value. Intermolecular 
hydroamidation of alkenes remains an underexplored method for the synthesis of amide-
containing compounds. The majority of hydroamidation procedures exhibit Markovnikov 
regioselectivity, while current methods for anti-Markovnikov hydroamidation are somewhat 
limited to activated alkene substrates or radical processes. My poster will disclose details of a 
general method for the intermolecular anti-Markovnikov hydroamidation of unactivated 
alkenes under mild conditions, which utilizes Rh(III) catalysis in conjunction with dioxazolone 
amidating reagents and isopropanol as an environmentally friendly hydride source. The 
reaction tolerates a wide range of functional groups and efficiently converts electron-deficient 
alkenes, styrenes, and 1,1-disubstituted alkenes, in addition to unactivated alkenes, to their 
corresponding linear amides. Mechanistic studies reveal an unselective and reversible 
rhodium hydride migratory insertion step, leading to exquisite selectivity for the anti-
Markovnikov product. 
 

 
 

Figure 1. Reversible rhodium hydride migratory insertion enables highly selective anti-
Markovnikov hydroamidation of unactivated alkenes 
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Chemists spend significant time performing menial tasks that rely on visual cues such as 
observing colour changes, monitoring liquid levels, detecting crystal formation, etc.1 Digital 
cameras can be combined with computer vision (CV) algorithms to automatically capture, 
process, and analyse such visual inputs.2 However, traditional CV systems are rigid in 
functionality when they are inherently designed to target specific tasks while exclusively relying 
on colour, grayscale, or edge identification for image analysis.3 Previously, the Hein Lab has 
focused on building fully integrated automated monitoring and control systems using flexible 
hardware and CV for liquid-level monitoring.4 Herein, we present a generalizable CV and 
machine learning model that was trained on images from a diverse array of chemical and non-
chemical processes. Our newly developed system can be used for automated real-time 
monitoring and control of experiments and can be readily trained to adjust to the ever-changing 
needs of the experiments. Compared with conventional CV systems that rely on selective 
parameterization for data analysis,5 our model simultaneously monitors multi-parameters (e.g., 
liquid level, homogeneity, turbidity, solid, residue, and colour), offering a method for rapid data 
acquisition and deeper analysis from multiple visual clues. We demonstrated a single platform 
(consisting of CV, machine learning, and automated robotics) to monitor and control vision-
based experimental techniques, including titration, solvent swap distillation, liquid-liquid 
extraction, solid-liquid mixing, crystallization, and solvent evaporation. Both qualitative (video 
capturing) and quantitative data (parameters measurement) were obtained which provided a 
method for data cross-validation. Our CV model's ease of use, generalizability, and non-
invasiveness make it an appealing complementary option to in situ and real-time analytical 
monitoring tools. Additionally, our platform is integrated with Mettler-Toledo’s iControl software, 
which acts as a centralized system for real-time data collection, visualization, and storage. With 
consistent data representation and infrastructure, we were able to efficiently transfer the 
technology and reproduce results between different labs. This ability to easily monitor and 
respond to the dynamic situational changes of the experiments is pivotal to enabling future 
flexible automation workflows.  
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(2) Ley, S. V.; Ingham, R. J.; O’Brien, M.; Browne, D. L. Camera-Enabled Techniques for Organic 
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In the field of enabling technologies, the potential of flow chemistry for developing sustainable 

synthetic processes as well as for accessing new chemical space exploiting the reactivity of highly 
unstable intermediates is nowadays widely recognized.[1] In this lecture the use of organolithiums, 
halocarbenoids, strained heterocycles and overlooked sulfur functional groups will be discussed 
jointly to the key role of flow technology and flash chemistry concept in the development of synthetic 
strategies.[2-5] The outperformance of flow technology with respect to batch processing will be 
central in this discussion.  
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In recent years, new catalyst designs owing multiple active sites, such as multi-metallic and 
metal-ligand cooperative catalysts, have been intensively investigated to realize challenging 
transformations. In this purpose, design of supporting ligands and their combination with metal atoms 
are mainly focused. In contrast, counter anions, coexisting with cationic transition metal complexes, 
have been much less studied as a candidate for incorporating a catalytic function in transition metal 
catalysis except for serving as a Brønsted base including chiral phosphate or sulfonate.1, 2 Weakly 
coordinating anions (WCA) are often employed as counter anions of cationic metal complexes to 
open their coordination sites, but they do not contribute to activating substrates. 

We envisioned that a novel WCA endowed with Lewis acidic property would serve as a new 
class of multi-active site catalyst when combined with a cationic transition metal catalyst. A Lewis 
acidic WCA recognizes polar functional groups in substrates, such as halogens, carbonyls, and 
nitriles, by acid-base interaction to control orientation of the substrates. At the same time, the 
electrostatic interaction between the ion pair approximates the captured substrate to transition metal 
center.  

We synthesized tetraarylborate BB bearing tri-substituted boryl groups as Lewis acidic sites. 
Borate BB was employed as the counter anion to the Ir-catalyzed hydrogen isotope exchange of 1,4-
difunctionalized arenes. For instance, when H/D exchange reaction of p-nitroacetophenone was 
examined using BB as a counter anion under D2, significantly high regioselective of kortho/kmeta = 15.7 
was observed. Almost no regioselectivity was observed with a commonly employed WCA, 
tetrakis(3,5-bis(trifluoromethyl)phenyl)borate BArF, under the same conditions (kortho/kmeta = 1.21) 3, 
which demonstrated the concept of Lewis acidic WCA to realize a regioselective C-H activation. 

 
Figure 1. Structure of borate BB and H-D exchange reaction catalyzed by Ir complex bearing 

BB or BArF.  
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Catalytic dearomative reduction of N-heteroarenes is of important transformations in organic 
synthesis as well as medicinal chemistry. A number of organo(metallic) catalysts have been 
documented for selective hydrosilylation and hydroboration of pyridines to provide a broad range of 
dihydro-products.1 However, double hydroelementation of pyridines possibly leading to a new family 
of tetrahydro-products bearing a sp3 C−E bond (E = Si, B-based moieties), had been unknown until 
we disclosed. 
 In this talk, we describe the full aspects of the first double hydrosilylation and hydroboration of 
quinolines and pyridines catalyzed by B(C6F5)3.2 And, we present the Rh-catalyzed regio- and 
enantioselective double hydroboration of quinolines as an advanced catalytic system.3 Finally, we 
discuss about the Rh-catalyzed double hydroboration of pyridine, where a combination of mechanistic 
experiments and DFT calculations reveal the origin of the chemo- and regioselectivities.4 This Rh 
system represents the first example of a metal-catalyzed double hydroboration of N-heteroarenes.     
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Figure 1. Double hydroelementation of N-heteroarenes. 
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Organofluorine compounds have been attractive synthetic target molecules because fluorine 
substitution is commonly used in contemporary medicinal chemistry to improve metabolic stability and 
lipophilicity and to adjust acidity1). Especially compounds that have a fluorine-containing quaternary 
stereogenic center are important target molecules. Some synthetic methods have been reported, 
including catalytic enantioselective reactions,2-4) though the scope is limited to cyclic compounds. We 
envisioned that the silyl fluoroenolate would be a valuable precursor of an acyclic fluorine-containing 
quaternary stereogenic center. However, the regioselective synthesis of a silyl fluoroenolate remains 
elusive. 
Herein, we disclose a Ni-catalyzed cross-coupling reaction of silyl difluoroenolate with organozinc 
reagents in the presence of lithium salt. The regioselective coupling reaction gave a Z isomer in 
perfect selectivity (Figure 1). The use of bulky IPr* ligand suppressed further reaction of 
monofluoroenolate to diphenylenolate. The geometry of the alke moiety was unambiguously 
determined by 1H-19F HOESY of an E/Z mixture, which was obtained by treatment of the coupling 
product with tetrabutylammonium difluorotriphenylsilicate (TBAT). We next tested the asymmetric 
Tsuji-Trost reaction of our silyl monofluoroenolate to construct an acyclic fluorine-containing 
quaternary stereogenic center. As a result, we obtained desired products with moderate 
enantioselectivity by using tert-Bu PHOX ligand (Figure 2). 
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Figure1. Ni-catalyzed cross-coupling reaction of difluoroenolate and organozinc reagent  

 

OTES

Ph
F

toluene, 40 °C, 17 h

O

Ph
F

O OEt

O

+

Ph Ph
33%, 79%ee

1.1 equiv.

33 mol% TBAT
2 mol% [Pd(C3H5)Cl]2
5 mol% (S)-t-Bu-PHOX

PPh2

N

(S)-t-Bu-PHOX  
 

Figure 2. Tsuji-Trost allylation of silyl monofluoroenolate 
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Given the growing concerns about environmental and sustainable events of our society, carboxylic 
acids, which are naturally abundant and readily available, are in high demand as alternatives to 
commonly used carbon feedstocks.  Recently, we have intensively studied the decarbonylative 
molecular transformations of acyl fluorides, one of the carboxylic acid derivatives, as the substrates.1,2  
Since Schoenebeck disclosed the palladium-catalyzed decarbonylative trifluoromethylation of acyl 
fluorides in 2018,3 we have reported the Ni-catalyzed decarbonylative ethylation4 and borylation5 of 
acyl fluorides.  Under optimal conditions, it was found that acyl fluorides with functional groups such 
as cyano, halides (F and Cl), ketone, and ester were well tolerated.   
As shown in Figure 1, we have established an efficient and practical method for nickel-catalyzed 
decarbonylative cyanation of acyl chlorides with TMSCN to convert a variety of acyl chlorides to 
nitriles in good to excellent yields.  Mechanistic studies suggest that the phosphine ligands (PPh3) 
facilitate the decarbonylation and reductive elimination steps.  When the stronger electron-donating 
ligand PEt3 was employed, the oxidative adduct was less prone to release CO in the absence of 
TMSCN, which allowed us to isolate the acyl–Ni complex as an intermediate.  On the other hand, in 
the presence of TMSCN, transmetalation occurred smoothly prior to decarbonylation.  
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Figure 1. Ni-catalyzed decarbonylative cyanation of acyl chlorides. 
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Mechanistic analysis is important for the development and optimization of catalytic 

reactions. Real-time reaction monitoring coupled with process analytical technology provides 
a broad perspective of the reaction system and its kinetics, which in turn may allow for 
mechanistic elucidation. During the development of a Pd-catalyzed C-N coupling to access a 
chiral active pharmaceutical ingredient (API), the transformation was profiled using kinetic 
analysis and optimized for yield, but several phenomena related to substrate/product 
degradation and epimerization during the reaction remained understudied and less well 
understood. 

 
Figure 1. Schematic of online HPLC sampling system. 
 
Online HPLC-MS was employed to acquire time course profiles to delineate 

epimerization behavior, identify and mitigate decomposition pathways, and study the effects 
and nature of the Pd species. Our investigation provides practical insight on the execution and 
optimization of reactions susceptible to similar epimerization and decomposition processes. 
We further show that it is possible to interrogate the catalyst speciation via online HPLC-MS, 
giving the distribution of the Pd-precatalyst and its oxidative addition complexes over time. 
Altogether, we demonstrate that online HPLC-MS is a unique and powerful tool for directly 
interrogating complex catalytic systems and for the optimization of chemical processes. 
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  Continuous-flow reactions with chiral heterogeneous catalysts enable efficient, safe, and 
environmentally benign synthesis of optically active compounds, and catalysts can be separated and 
reused continuously. Despite these advantages, continuous-flow enantioselective transition metal 
catalysis is hardly explored due to the lack of efficient chiral heterogeneous catalysts. Therefore, the 
development of efficient and versatile immobilization methods of chiral transition metal catalysts is in 
high demand.  
  We have designed a heteropoly acid/amine-functionalized SiO2 composite as support for chiral 
cationic transition metal complexes and developed continuous-flow enantioselective catalysis using 
chiral heterogeneous catalysts (Fig. 1). Heteropoly acid forms acid-base salts with amines on the 
surface of SiO2, and cationic metal catalysts are immobilized on anionic heteropoly acids via 
electrostatic interaction. Characteristic points of this method are that no modification of chiral ligands 
is necessary for the immobilization, and high mass transfer ability is attained by the use of 
mesoporous SiO2. 
  As a proof of concept of this method, we have developed enantioselective hydrogenation of 
enamides using chiral heterogeneous Rh(I) catalysts in 2020.1 The catalysts exhibited high activity 
and enantioselectivity and the target optically active amides could be obtained in quantitative yields 
with >99% ee’s for >90 h without leaching of Rh. This type of chiral heterogeneous Rh(I) catalysts 
could be applicable for different types of Rh(I) catalyses such as enantioselective reductive cyclization 
of 1,6-en-ynes and enantioselective hydroacylations under continuous-flow conditions. In this work, 
we have also demonstrated sequential-flow synthesis of useful molecules by connecting with other 
heterogeneous catalyses. Moreover, this method could be applicable for chiral Sc Lewis acid 
catalysis and continuous-flow enantioselective Friedel-Crafts type reaction was developed.2 
Throughout these studies, we have discovered that the structure of SiO2, surface amine, and 
heteropoly acid are essential and the catalyst activity and selectivity can be tuned by changing their 
structure, which is essential for high efficiency and versatility of this immobilization method. 
 

 
Figure 1. Design and Application of Chiral Heterogeneous Catalysts 
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In recent decades, increasing amounts of pharmaceuticals have been found in bodies of water with 
endocrine-disrupting chemicals (EDCs), such as 17β-estradiol, raising distinct concern. 1 Titanium 
dioxide (TiO2) has been greatly studied as a semiconductor for photodegrading pharmaceutical 
pollutants. However, with a bandgap of 3.2 eV, standard white TiO2 only uses 4 % of the solar spectrum 
for photocatalytic processes. This study aimed to design a black TiO2-based catalyst, to photodegrade 
of organic water contaminants under visible light. Black TiO2 has a reported bandgap of 1.54 eV and 
thus allows for upwards of 40% of the solar spectrum to be utilized. 2 

 
The synthesis of the target photocatalyst was achieved by loading titanium isopropoxide onto a glass 
fiber support and adding deionized water to induce the deposition of TiO2. The resulting material is then 
dried and reduced with ethanol under inert conditions to form black TiO2. Crocin, a natural yellow-red 
pigment, was chosen as a surrogate molecule for preliminary studies. The elimination of crocin and 
17β-estradiol from aqueous solutions was examined using a bench top flow system comprised of a 
mechanical pump, glass tubing, a flow-through cuvette, and white LED panels to provide visible light 
irradiation. This continuous flow setup allowed for cyclical circulation of aqueous solutions containing 
the organic pollutants.  
 
The black TiO2 material was effective in degrading both organic water contaminants. Crocin 
experiments, performed in Milli-Q water, were monitored using UV-vis spectroscopy and 
demonstrated that the degradation of the surrogate molecule occurred at a greater rate, by a factor of 
1.83, when using black TiO2 as opposed to standard white TiO2 under the same experimental 
conditions. The degradation of 17β-estradiol was conducted in an acetonitrile/Milli-Q water and 
aliquots were collected for analysis using high-performance liquid 
chromatography (HPLC). HPLC results indicated that up to 90 % 
of the 17β-estradiol content in a 1 mM solution was eliminated 
using black TiO2 under white light irradiation for 4 hours. Estrone, 
a common product of 17β-estradiol oxidation, was identified 
amongst other products as is shown in Figure 1. Current efforts 
aim to optimize reaction conditions to achieve mineralization of 
targets EDCs. 
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Ethereal C–O bond serves as a crucial linkage in various plastic materials, including epoxy resin.[1] In 
the case of cured bisphenol A (BPA)-based epoxy resin (Scheme 1a), the selective cleavage of 
ethereal C(sp3)–O bond would allow a direct recovery of BPA. This would provide an appealing 
recycling approach for gaining valuable chemical feedstocks from discarded plastic wastes. 
However, previous examples of homogeneous catalytic cleavage of ethereal C–O bonds have 
typically targeted C(sp2)–O bonds, despite the co-existence of C(sp3)–O bonds.[2] While a rare 
example of selective demethylation of aryl methyl ethers by an Ir catalyst under H2 atmosphere was 
reported by Nozaki,[3] indicating the potential for degrading BPA-based epoxy resin for recovering 
BPA, but the high cost and synthetical complexity of the Ir complex restrict its industrial 
implementation. 
Herein, we synthesized 1-aryloxy-3-amino-2-propanol (A) (aryloxy = 4-tert-butylphenoxy, amino = 
diethylamino) as a model compound of amine-cured epoxy resin, and treated A with bisphosphine 
ligand-supported Ni complex at 200 °C to successfully resulted corresponding phenol B in 90% NMR 
yield (Scheme 1b), where the C–O cleavage selectively occurred at sp3 carbon. To be noted, 
aminoacetone C was also detected by GC-MS, which strongly suggested a transfer hydrogenolysis 
pathway in this reaction where the hydroxy group acts as the hydrogen donor. 
Furthermore, when employed this method to Et2NH-ring-opened epoxy resin prepolymer D (Scheme 
1c), the C(sp3)–O cleavage also proceeded to afford 20% GC yield of BPA. This promising result 
shows the potential application in the selective degradation of actual epoxy resin for the recovery of 
BPA. 
 
Scheme 1. Outline of This Work 
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Cyclic α,β-unsaturated carbonyls are versatile intermediates in the synthesis of active pharmaceutical 
compounds. One of the ways of functionalizing cyclic enones is through β-arylation using Mizoroki-
Heck reaction.1 However, Heck reaction of cyclic enones with aryl halides is a challenging 
transformation and remains underexplored in the literature.2 
We report palladium-catalyzed Mizoroki-Heck reaction of cyclic enones with aryl bromides, including 
heteroaryl bromides. Some challenges of the reaction include deactivation of the catalyst by 
heteroaryl bromides, homocoupling of aryl bromides, and reduction of β-arylated enone. Our method 
containing catalytic palladium with BippyPhos ligand promotes cross-coupling reactions of wide range 
of aryl bromides with cyclic enones in good to excellent yields under mild conditions.  
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Figure 1. Pd-catalyzed β-arylation of cyclohexenone 
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Homogeneous catalysis has many advantages over heterogenous catalysis including high product 
selectivities and that the processes are often easy to characterize and study, hence making them 
easier to modify to improve reactivity. However, one of the key disadvantages associated with 
homogenous catalysis is that the separation of the products and the catalyst is often not feasible. 
Traditional methods in homogeneous catalysis rely heavily on platinum group metal catalysts to 
facilitate reactivity.1 Strategies to recycle these expensive and in-abundant metals are highly 
desirable.  
The use of a metalla-GAP strategy (GAP = Group-Assisted-Purification) in homogeneous catalysis, 
which allows simple recovery and re-use of a homogeneous metal catalyst will be presented in 
addition to a recyclable pseudo-homogenous palladium nanoparticle based system.2-4 Palladium-
based catalysts exhibit excellent reactivity in Suzuki coupling reactions while delivering a broad 
substrate scope (25 examples, up to 95% isolated yield) and high functional group tolerance. Zinc-
based catalysts exhibit excellent reactivity in hydrosilylation reactions (29 examples, up to 92% 
isolated yield). The origins of the reactivity present in the palladium- and zinc-catalyzed 
transformations, and recyclability studies will be discussed. 
 

Figure 1. Recyclable pseudo-homogenous catalysts for Suzuki couplings.  
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Designing hemilabile ligated transition metal complexes that can undergo rapid ligand 
association/dissociation and exchange in solution allows for modulation of coordination number and 
electrophilic properties at reactive metal centers for organometallic catalysis. Hybrid phosphorus, 
nitrogen (PN) donor ligands have proven to be superior to bidentate diamine (NN) and diphosphine 
(PP) ligands in numerous catalytic applications.1 Decreasing the bite-angle of these ligands increases 
strain, promotes ligand dissociation of a labile N donor and facilitates reactivity of the resultant 
complex. Additionally, both steric and electronic effects of the phosphorus donor have also been 
shown to promote new coordination modes and can facilitate various C-E (E = O, N, X) bond forming 
reactions.2-4 
In this work, we have synthesized a new class of highly strained κ2-P,N Ni(II) complexes with a variety 
of pyridylphosphine and aminophosphine bidentate ligands. These complexes have been 
characterized by 1H and 31P NMR spectroscopy as well as single-crystal X-ray diffraction. The 
electronic features of the N donor have a dramatic influence on the coordination geometry of the 
resulting Ni(II) complexes. Initial reactivity investigations with these complexes shows promising 
results for C(sp3)−H bond functionalization reactions and provides insights into the design criteria for 
optimizing Ni catalysts in productive small molecule activation. 
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Figure 1. Coordination geometry of hemilabile P,N Ligands with Ni(II). 
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Hydroaminoalkylation is an atom-economic method to form new Csp
3—Csp

3 bonds by reacting alkenes 
with a C—H bond α to an amine.1 If inexpensive and low toxicity early transition metal catalysts are 
employed in hydroaminoalkylation, no protecting or directing groups are required, thus increasing 
synthetic efficiency, and minimizing waste generation. A recently developed in-situ tantalum-catalyst 
system can be assembled using Ta(CH2SiMe3)3Cl2 and a ureate ligand with catalyst loadings as low 
as 5 mol%.2 This tantalum ureate system displays a wide tolerance for aryl amines, dialkyl amines, 
and in particular saturated N-heterocycles are reactive with a variety of alkenes, in contrast to other 
early transition metal hydroaminoalkylation catalysts that have shown limited utility with saturated N-
heterocycles.3 This catalyst system features reduced reaction temperatures and times, increased 
TONs and TOFs and enhanced substrate functional group tolerance and provides promising 
opportunities for post-hydroaminoalkylation transformations. A series of diastereoselectively alkylated 
saturated N-heterocyclic hydroaminoalkylation products created from ortho-chlorostyrenes and 
alkenyl alcohols can be prepared (Figure 1). All saturated N-heterocycles used are commercially 
available and the resultant products are primed for ring-closure. This presentation will discuss high-
yielding one-pot multi-catalytic strategies toward diverse N-heterocyclic scaffolds accessed via 
sequential one-pot hydroaminoalkylation and Buchwald-Hartwig amination. As well, a one-pot 
strategy featuring a hydroaminoalkylation/SN2 cyclization strategy is also discussed, furnishing 
natural- product-like bicyclic saturated N-heterocyclic products. 
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Chiral α-aryl amino acids are important structural motifs present in various pharmaceuticals like the 
penicillin derivative amoxicillin. Usually, these important compounds are synthesized by asymmetric 
variants of the Strecker synthesis1 or the Petasis-Borono Mannich reaction2, which are however 
limited to the use of toxic cyanide sources or prefunctionalized expensive boronic acids. For this 
reason, in the last decades the direct arylation of glycine derivatives was explored, while only few 
examples for the asymmetric synthesis of arylglycines are reported.3–6 In previous works, the group of 
Barrett explored a diastereoselective aryne-mediated arylation of the Schöllkopf bis-lactim ether using 
aryl halides and n/sec-BuLi at low temperatures.7 In this work, a Pd-catalysed diastereoselective 
arylation of the bis-lactim ether with cheap and broadly abundant aryl chlorides under mild reaction 
conditions was achieved (Figure 1). This method has opened up an expedient access to a wide 
variety of chiral arylglycines including derivatives of commercially available drugs, sequential 
arylation-alkylation sequences and mild deprotection strategies. 
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Figure 1. Pd-catalyzed asymmetric arylation of the bis-lactim ether with aryl chlorides. 
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Alkyl sodium reagents have been proposed as an alternative to organolithiums, one of the 
workhorses of synthetic chemistry.[1] Several factors, however, have hindered their wider 
synthetic application in organic synthesis. They are plagued by poor solubility in hydrocarbon 
solvents and low stability in donating ethereal solvents. These impediments have made them 
inconvenient for widespread use by synthetic chemists, leading to a lower accessibility when 
compared with their lighter lithium congers. Despite these limitations, recent reports in the 
field of organosodium chemistry have focused on the development of new reactivity and have 
demonstrated the potential of these powerful reagents in synthesis, surpassing the reactivity 
obtained with other organometallic reagents.[2][3]  However, the nature of the sodiated 
intermediates in both the solid state and in solution remains poorly understood, missing an 
opportunity to improve upon these systems. 
In this communication, we report on the exploitation of the Lewis basicity of PMDETA 
(N,N,N’,N’’,N’’-pentamethyldiethylenetriamine) to access and characterise a hydrocarbon 
soluble alkyl sodium reagent. This astoundingly soluble reagent was subsequently used 
towards the development of a facile and selective route for benzylic metalation of the 
corresponding nonactivated toluene derivatives. We demonstrate the reactivity of the formed 
benzyl sodiums through application in benzylic aroylation with a Weinreb amide to access 
synthetically useful 2-aryl acetophenones, and in their reactivity towards C=X double bonds 
(X = C, N or O). Reaction intermediates were characterised using a combination of X-ray 
crystallography and 1H DOSY (Diffusion Ordered SpectroscopY) NMR, providing the first 
reported synthetic and structural insights on the constitution of the intermediates in these 
reactions, advancing our understanding of how these systems operate in solution.[4] 
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Figure 1. Alkyl sodium mediated benzylic aroylation. 
References 

[1] U. Wietelmann and J. Klett, 200 Years of Lithium and 100 Years of Organolithium Chemistry, 
Zeitschrift fur Anorg. und Allg. Chemie, 2018, 644, 194–204 

[2] J. H. Harenberg, R. R. Annapureddy, K. Karaghiosoff and P. Knochel, Continuous Flow 
Preparation of Benzylic Sodium Organometallics, Angew. Chem. Int. Ed. 2022, 61, e2022038 

[3] S. Asako, H. Nakajima and K. Takai, Organosodium compounds for catalytic cross-coupling, 
Nat. Catal., 2019, 2, 297–303. 

[4] D. E. Anderson, A. Tortajada, E. Hevia, Highly Reactive Hydrocarbon Soluble Alkylsodium 
Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides, Angew. Chem. Int. Ed., 
2023, 62, e202218498. 

mailto:david.anderson@unibe.ch


100 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 38 

 
Selenium Complexes for C-H Amination of Alkenes and Alkynes 

 
John R. Tabor, Derek C. Obenschain, Wei Pin Teh, Alex F. Dohoda, T. Parker Maloney, 

Forrest E. Michael*a 
aUniversity of Washington 

 
Email: fmichael@uw.edu  

 
Selective C-H amination of complex molecules is a powerful strategy for introduction of new 
nitrogen functionality, but control over selectivity remains a principal challenge. We have  developed a 
new class of selenium catalysts bearing NHC and phosphine ligands, and employed their use in 
several highly selective and general C-H amination reactions of complex molecules. The low cost and 
easy availability of these selenium-based catalysts makes them ideal for use in late-stage 
functionalization and other synthetic applications. The high selectivity and functional group tolerance 
of these catalysts derives from the unique mechanisms of the selenium-catalyzed transformations. 
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Figure 1. Selenium-catalyzed amination reactions 
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In this study, amino-substitued 1,4-naphthoquinones (1) was employed as the starting material in the 
presence of methanol, amine and divalent palladium salt for the purpose of carrying out one-pot 
catalytic reaction (Scheme 1). Interestingly, a structurally fascinating product (2) was obtained. It was 
characterized by spectroscopic methods as well as X-ray single crystal diffraction methods (Fig. 1). 
The structure of 2 reveals that two newly formed fragments containing morpholine rings are linked by 
a methylene moiety. It is believed that palladium-catalyzed intra-molecular C-H/O-H bond coupling 
processes indeed took place. Unexpectedly, the source of this newly generated methylene moiety in 
these compound is from the solvent, methanol, used here. It was further confirmed by the 
disappearance of the corresponding signals in 1H NMR spectrum by employing deuterated methanol 
(CD3OD) as the reactant. It is proposed that a palladium carbene moiety was firstly generated and 
subsequently participated in successive reaction steps. Similar reaction of 1 was carried out, except 
replacing methanol by benzaldehyde, and led to the formations of 3 and 4 with oxazepine and 
oxazole rings, respectively. Several corresponding 2, 3 and 4 derivatives were also obtained while 
various substituted 1-dervtaives were employed as the reactants.  
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Scheme 1. The palladium-catalyzed reactions of 1 under diverse conditions leading to the 
formations of 2, 3 and 4, respectively. 
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Dihalo(hetero)arenes have attracted considerable attention due to their great versatility as substrates 
for transition metal-catalyzed cross-coupling. Selective monofunctionalization of dihalo(hetero)arenes 
can afford monohalobiaryls, which are prevalent in bioactive molecules, in addition to serving as 
intermediates for the synthesis of multisubstituted (hetero)arenes. A relevant example are 
dichloropyridines, which can serve as linchpin to numerous pharmaceuticals and agrochemicals.1 
Methods employing Pd-catalyzed Suzuki-Miyaura cross-coupling conditions have been developed for 
the selective monoarylation of dichloropyridines.1,2 In contrast, we demonstrate that many Ni-based 
catalysts promote selective formation of diarylation products with these substrates, even under 
conditions where arylboronic acid is the limiting reagent (Scheme 1A). To address this challenge, we 
have developed a Ni-phosphine catalyst system for the selective monoarylation of dichloropyridines 
with aryl boronic acids (Scheme 1B). Compatibility, selectivity, and reactivity challenges will be 
addressed. In addition, we provide preliminary insights into the mechanism of diarylation. 
 

 

 
 

Figure 1. Selective cross-coupling for monoarylation of dichloropyridines 
 
 

References 
[1] Yamaguchi, M.; Manabe, K. Catalyst-Controlled Site-Selectivity Switching in Pd-Catalyzed Cross-
Coupling of Dihaloarenes, Catalysts 2014, 4, 307-320. 
[2] Norman, J. P.; Larson, N. G.; Entz, E. D.; Neufeldt, S. R.; Unconventional Site Selectivity in 
Palladium-Catalyzed Cross-Couplings of Dichloroheteroarenes under Ligand-Controlled and Ligand-
Free Systems. J. Org. Chem. 2022, 87, 7414-7421. 
 



103 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 41 

Investigation of powerful 1,5-diaza-3,7-diphosphacyclooctanes ligands in 
the reductive 1,2 arylation of isatins 

 
Amrah Nasim,a Gilian T. Thomas,a Stephen G. Newman*a 

aUniversity of Ottawa 
Email: gilian.t.thomas@gmail.com; stephen.newman@uottawa.ca 

 

Nucleophilic addition to the 3-position of the pharmaceutically-relevant isatin backbone 
produces 3-substituted-3-hydroxy-2-oxindoles which are of particular interest as a scaffold in 
bioactive natural products. Previous synthetic methods used to access this scaffold typically 
are subject to harsh conditions, have a limited scope, and use stoichiometric organometallic 
reagents. Herein we present a method for reductive 1,2-arylation that allows access to a 
range of 3-hydroxy-3-aryl-2-oxindole derivatives using a novel Ni/1,5-diaza-3,7-
diphosphacyclooctane (P2N2) catalyst with yields up to 91%. Two of these Ni/P2N2 species 
are crystallized and catalytically active, providing evidence for a modified carbonyl-Heck-type 
mechanism.  
 

 
 
Figure 1. Summary of classical 1,2-addition and Ni/P2N2-catalyzed methods of coupling aryl 

iodides and isatins to form 3-hydroxyoxindoles.  
 
 

References 
[1] Nasim, A., Thomas, G. T., Newman, S. G. Reductive 1,2-arylation of isatins. Org. Lett. 2022, 24, 
7232-7236. 
 

 

 

 

 

 

 



104 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 42 

 
Mechanistic Insights into A Base-Free, Air-Stable, Palladium Cross-
Coupling Reaction of Alkenyl Carboxylates and Aryl Boronic Acids 

 
Gregory Gaube,a Gilian T. Thomas,a J. Scott McIndoe,a David C. Leitch*a 

aUniversity of Victoria. 
 

Email: greggaube@uvic.ca; dcleitch@uvic.ca 
 

Alkenyl carboxylates are an interesting subsection of C–O bonds, as they had been thought of as 
nearly unreactive in palladium cross-coupling.1 However, a report from the Leitch group highlighted 
their efficacy in a base-free, air-stable, palladium cross coupling reaction with aryl boronic acids.2 
Electrospray ionization mass spectrometry with a charge tagged boronic-acid allowed for key cationic 
intermediates to be identified. This, in tandem with hetereonuclear NMR, allowed us to propose a 
Pd(II) only mechanism with the critical step of a doubly ligated palladium aryl species dissociating a 
phosphine ligand to coordinate with the alkenyl carboxylate. 

 

 
Figure 1. Proposed mechanism using a charge-tagged boronic acid   

 
 
 
 

References 
[1] Zhou, T.; Szostak, M. Palladium-Catalyzed Cross-Couplings by C–O Bond Activation. Catal. Sci. 
Technol. 2020, 10 (17), 5702–5739. https://doi.org/10.1039/D0CY01159B. 
[2] Becica, J.; Heath, O. R. J.; Zheng, C. H. M.; Leitch, D. C. Palladium-Catalyzed Cross-Coupling of 
Alkenyl Carboxylates. Angewandte Chemie International Edition 2020, 59 (39), 17277–17281. 
https://doi.org/10.1002/anie.202006586. 
 
 



105 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 43 

Reductive anti-Dizincation of Alkynes 
 

Haruka Yamaguchi, Fumiya Takahashi, Takashi Kurogi, Hideki Yorimitsu* 
Department of Chemistry, Kyoto University 

 
Email: yamaguchi@org.kuchem.kyoto-u.ac.jp; yori@kuchem.kyoto-u.ac.jp 

 

Polar 1,2-dimetalloalkenes can engage in bond formations at the two adjacent carbon–metal bonds to 
afford various multi-substituted alkenes. Despite their promising utility, there are few general methods 
for the preparation of polar 1,2-dimetalloalkenes. Recently, we have reported the reductive anti-1,2-
dimagnesiation and dialumination of alkynes by means of sodium metal.1 However, similar 1,2-
dizincation has only been achieved indirectly by transmetallation of the corresponding 1,2-
dimagnesioalkenes to zinc.2 Herein, we report an efficient method for the direct preparation of 1,2-
dizincioalkenes from alkynes without the intermediacy of organo magnesium species (Figure 1). 
Reduction of diarylacetylenes with sodium metal in the presence of a Zn salt resulted in the formation 
of trans-1,2-dizincioalkenes. We also performed subsequent Pd-catalyzed cross-coupling of 
dizincioalkenes with aryl iodides to give tetraarylalkenes. 
  

 
 

Figure 1. Reductive anti-dizincation of alkynes and subsequent cross-coupling reaction. 
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Well-ordered nanostructured heterogeneous catalysts have been favored to achieve efficient organic 
transformations due to their inherent advantages like reusability and control of metal leaching. 
Although nanostructure supports for metal nanoparticles are attractive candidates, their stability and 
selectivity for heterogeneous catalytic systems are still developing. 
Herein, we present silicon nanowire array-metal nanoparticle hybrid catalysts (SiNA-MNP) as novel 
platforms for a variety of organic transformations such as the Mizoroki-Heck reaction, the C-H 
functionalization, the hydrogenation, and the hydrogenative decarboxylation (Figure 1).1-4 Hybrid 
catalysts consisted of ordered silicon nanowire arrays and metal nanoparticles where metal-silicon 
bonds as gradually gradated metal silicide provide abundant nano-size reaction fields, high stability, 
and robustness. Monometallic and bimetallic SiNA-MNP catalysts were prepared by metal-assisted 
chemical etching and metal depositing. SiNA-Pd achieved the high turnover number (TON) and 
turnover frequency (TOF) of 2,000,000 and 40,000 h-1, respectively, in the Mizoroki-Heck reaction. 
Moreover, SiNA-Pd showed the high reusability over 150 times in the hydrogenation. A flow reductive 
alkylation by using a silicon wafer-based catalyst as a novel microflow reaction device was 
investigated where the TON reached 4.0 x 104 in a continuous run over 24 h (3.9 kg/day). SiNA-Rh 
promoted the hydrogenative decarboxylation of fatty acids with great selectivity and catalytic activity 
under microwave irradiation to afford bio-jet and bio-diesel fuels.  

 
Figure 1. A schematic image of a variety of organic transformations catalyzed by SiNA-MNP.  
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Multi-substituted alkenes are one of the basic skeletons of organic compounds and can be found in a 
variety of bioactive substances and organic electronic materials. It is therefore very important to 
synthesize alkenes with the control of their regio- and stereoselectivity because each isomer can 
have different properties. In particular, alkenes having silicon and boron as substituents are known to 
be useful synthetic intermediates for various organic compounds since both silyl and boryl groups can 
be readily converted to various other functional groups. For the synthesis of these alkenes, 
silylboration of alkynes, which simultaneously introduces silicon and boron into the carbon–carbon 
triple bond of alkynes, is the most straightforward and powerful approach.1 However, most of the 
existing methods employ terminal alkynes or symmetric internal alkynes as substrates, and only a few 
reports have been made that could achieve silylboration of unsymmetric internal alkynes regio- and 
stereoselectively.2 Among them, trans-selective reactions have been limited to certain alkynes having 
electron-withdrawing groups.3 In this context, herein we describe the development of regio- and trans-
selective silylboration of unactivated internal alkynes in the presence of a copper catalyst and a metal 
alkoxide base (Figure 1).4,5  
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Figure 1. Copper-catalyzed regio- and trans-selective silylboration of internal alkynes. 
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Since medium-sized N-heterocyclic scaffolds are prevalent in natural products, and biologically 
active molecules, their synthesis has attracted attention in various fields of chemistry. Among them, 
seven-membered azepines and diazepines are some of the most significant pharmacophores 
exhibiting diverse biological activities. Azepine derivatives, which are core structures of market drugs 
such as Benazepril, Mianserin, and Tolvaptan, have been prepared through conventional synthetic 
approaches, electrocyclizations, higher-order cycloadditions, and cross-coupling reactions. 
 

Our group has developed synthetic methods of N-aromatic zwitterions, which are site-switchable 
reagents for the construction of diverse N-heterocycles. Although N-aromatic zwitterions are practical 
and readily available starting materials, they have structural limitations that furnish cyclic products, 
inevitably fused with six-membered piperidine scaffolds. To overcome such shortcomings, we 
envisioned a cascade reaction using N-aromatic zwitterion, a formation of a strained small-ring 
followed by its expansion, to construct medium-sized N-heterocycles.[1] In this presentation, we 
discuss synthetic methods for the construction of azepine derivatives through cycloadditive ring-
expansions of N-aromatic zwitterions. It has been revealed that diazo acetates[2] and diazo 
methylphosphonates are suitable to undergo cyclopropanations of N-aromatic zwitterions in the 
presence of a silver catalyst to provide the cyclopropane-fused intermediates, which are further 
expanded into desired azepines.[3] The developed cycloadditive expansion reaction has been 
characterized by broad substrate scope, mild reaction conditions, easy scale-up reactivity, and easy 
synthetic applicability. 
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Figure 1. Silver(I)-catalyzed ring-expansion between the quinolinium zwitterion and  
diazo compounds. 
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The first total synthesis of the macrocyclic natural product (+)-Archangiumide has been 
accomplished. This macrolide, isolated by Li and Wu et al. from an Archangium myxobacterium, 
exhibits several interesting structural features, including two E-configured alkenes, six oxygen-bearing 
stereocenters and an additional stereogenic element in an endocyclic vinylallene within a 17-
membered macrocycle.1 Whilst access to such a structure would present challenges for classical 
organic chemistry, the use of state-of-the-art transition metal catalysis has enabled a modular and 
efficient synthesis. Molybdenum-catalysed ring-closing alkyne metathesis and gold-catalysed 
rearrangement served as key steps; catalytic transformations using palladium, copper, and ruthenium 
were also brought to bear. Driven by these modern synthetic methodologies, the total synthesis of the 
target compound was achieved in an expedient and convergent manner. Moreover, this synthesis 
was used to probe the stereochemical course of a gold-catalysed π-bond transposition.  
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Figure 1. The structure of (+)-archangiumide, the natural product synthesised in this work. 
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The emergence of a new alkene hydrofunctionalization reaction with amines, hydroaminoalkylation 
(HAA), offers new opportunities to improve sustainability, efficiency, and diversity in constructing 
amines as they are biologically important compounds.1 Our group has world-leading technology in 
catalytic HAA that features the use of inexpensive, relatively earth-abundant and non-toxic, early-
transition metal catalysts. HAA is the atom economic formation of a new Csp3-Csp3 bond by adding a 
C-H bond α to an amine across a C-C double bond in a single step synthesis. We have reported 
multiple generations of early transition metal catalysts equipped with hemilabile 1,3-N,O chelating 
ligands that successfully perform HAA each overcoming the challenges of the predecessors in terms 
of reactivity and stability. Initial findings with a tantalum mono-amidate catalyst 1 demonstrated the 
increased stability offered by the N,O ligands results in better reactivity (lower temperatures) while 
requiring long reaction times.2 Subsequently a phosphoramidate tantalum catalyst 2 was employed at 
room temperature to perform HAA for amines and alkenes with steric and electronic variability but 
was light and heat sensitive.3 Afterwards, to improve robustness and have less steric congestion, a 2-
pyridonate tantalum catalyst 3 was designed that can catalyze unactivated and sterically demanding 
E and Z internal alkenes.4 Recently, our group further improved synthetic utility of these catalysts with 
in-situ catalyst formation by combining Ta(CH2SiMe3)3Cl2 and an ureate ligand to perform HAA under 
relatively mild conditions. Previously reported work required changing the ureate ligand to yield high 
reactivity with external or internal alkenes respectively.1 Therefore, the development of a single ligand 
that can achieve high yields under mild conditions for both a diverse set of internal and external 
alkenes and amines is disclosed here for the first time. This in-situ formed catalyst can perform HAA 
with external, internal alkenes and various amines at mild conditions with temperature, time, and 
catalyst loadings as low as 110°C, 2 h and 1 mol % obtaining pharmaceutically useful amines in high 
yields and selectivities.   

 
 

Figure 1. Summary of our group’s process on tantalum catalyzed HAA reaction. 
 

References 
[1] DiPucchio, R. C.; Roşca, S. C.; Schafer, L. L. Angew. Chemie - Int. Ed. 2018, 57 (13), 3469–3472. 
[2] Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L. Angew. Chemie 2009, 121 (44), 
8511–8515. 
[3] Garcia, P.; Lau, Y. Y.; Perry, M. R.; Schafer, L. L. Angew. Chemie - Int. Ed. 2013, 52 (35), 9144– 
9148. 
[4] Chong, E.; Brandt, J. W.; Schafer, L. L. J. Am. Chem. Soc. 2014, 136 (31), 10898–10901. 
  

H
N

N

O
Ta(NMe2)3Cl

Ph

5-10 mol%

110-145 °C
20-54 h

R2

R1

H
N

R1

R2

N
P TaMe3Cl

O
EtO
EtO

H
N

R1

R2

1-5 mol % Ta(CH2SiMe3)3Cl2

O

NN

Na

H
N

R1

R2

H
N

R1

R2

N
Ta(NMe2)4

O
tBu

iPr iPr
10 mol%

20 h, RT

5 mol%

110-165 °C
11-134 h

110-145 °C
2-24 h

1

2

3

4

• Broad Scope of 
alkenes and amines

• Air and light sensitive

• First generation HAA Ta catalyst
• Long reaction times

This work:
• Excellent reactivity for internal, external 

alkenes
• In-situ catalyst formation
• Mild conditions

ellent reactivity for internal 
nes only
 conditions



111 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

FL 1 / PS 49 

 
Investigation of N-Heterocyclic Carbene Aryl Ligands for the Undirected 

Borylation of Secondary Alkyl C–H Bonds 
Jenna Manske,a Hamile Khan,a John Hartwig*a 

aUniversity of California, Berkeley  
Email: jlmanske@berkeley.edu; jhartwig@berkeley.edu 

 

The ubiquity and stability of alkyl C–H bonds have rendered their selective functionalization 
an area of great interest. The borylation of C–H bonds is an appealing transformation because the 
resulting compounds can be diversified through well-known reactions, enabling the installation of 
diverse functional groups at the position of the original C-H bond.1 While the borylation of aryl C–H 
bonds is well-developed2, borylation of alkyl C–H bonds remains a challenge. Recently, 
phenanthroline ligand scaffolds have been explored for the borylation of primary, secondary,3-4 and 
tertiary5 alkyl C–H bonds. We envisioned that studies of alternative, but related, ligand scaffolds could 
lead to insight into how to develop more stable, active, or selective catalysts, ultimately increasing the 
applicability of Ir-catalyzed borylation of alkyl C–H bonds. To this end, it was reported in 2019 that the 
computed barrier for the proposed turnover limiting step of reductive elimination to form the C–B bond 
from an iridium complex with an N-heterocyclic carbene pyridine (NHC-py) ligand was lower than from 
iridium ligated by phenanthroline derivatives.6 We hypothesized that the electron-donating N-
heterocyclic carbene moiety could stabilize the metal through strong coordination.7 Thus, we sought 
to test this prediction of a superior ligand by the computational work.  

We report the borylation of the secondary C–H bonds of tetrahydrofuran (THF) by iridium 
catalysts containing NHC-py ligands. Reactions performed with isolated carbene in combination with 
iridium and catalytic sodium tert-butoxide led to the highest yields of borylated THF. NMR studies and 
high yields obtained from NHC-Ar ligands support the formation of a catalytically competent 
cyclometallated NHC-iridium complex. The yield and selectivity from reactions conducted with an 
independently synthesized cyclometallated iridium complex was similar to the yield and selectivity 
from reactions conducted with a mixture of iridium precatalyst and ligand. In contrast to previous 
reports of the borylation of THF occurring exclusively at the 𝛽𝛽-position with phenanthroline ligands3–4, 
and computationally predicted reactivity for these NHC-py ligands,6 reactions catalyzed by NHC-Ar 
ligands, in combination with iridium, form two isomeric boryl THF products in up to a 6.5 : 1 (α : β) 
ratio.  

Studies to determine the role of the sodium tert-butoxide base support association of the 
base to the iridium complex. Ongoing work aims to study reactions of the cyclometallated NHC-Ar 
iridium complexes in the presence of alkoxide base with density functional theory to evaluate binding 
modes of the alkoxide under catalytic conditions.  
 
 
 
 
 
 
 
 
 
Figure 1. Conditions for the borylation of tetrahydrofuran with an iridium complex containing 

an NHC-Ar ligand  
 
References 
[1] Fyfe, J. W.; Watson, A. J. B. Chem 2017, 3, 31-55. [2] Boller, T. M. et al. J. Am. Chem. Soc. 2005, 
127, 14263. [3] Oeschger, R. et al. Science. 2020, 368, 736-741. [4] Liskey, C. W.; Hartwig, J. F. J. 
Am. Chem. Soc. 2012, 134, 12422-12425. [5] Yu, I.; Manske, J.; et al. Nat. Chem. 2023. [6] Zhong, R. 
L.; Sakaki, S. J. Am. Chem. Soc. 2019, 141, 9854-9866. [7] Bellotti, P.; Koy, M.; Hopkinson, M. N.; 
Glorius, F. Nat Rev Chem 2021, 5, 711-725. 
  

mailto:jlmanske@berkeley.edu


112 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 50 

 
Synthesis of Oligosilanes via Transition-Metal-Free Silylene Transfer 

from Silylboronic Esters 
 

Jiaying Li,1 Yusuke Matsumoto,1 Ikuo Sasaki,1 Toshimichi Ohmura,2 Michinori 
Suginome1 

1Department of Synthetic Chemistry and Biological Chemistry, Graduate School of 
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan  

2Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. 

Email: ohmura@kit.ac.jp; suginome@sbchem.kyoto-u.ac.jp 

Polysilanes have been synthesized by Wurtz-type reductive coupling of dihalodiorganosilanes using a 
stoichiometric amount of alkali metals. Disproportionation of disilanes is another way to synthesize 
oligosilanes, which requires high reaction temperature and limits substituents on the silicon atoms.[1] 
The establishment of a new concept of oligosilane synthesis that allows various substituents on the 
silicon atoms and can carry out under mild conditions is highly demanded. 
Recently, we have reported a transition-metal-free silylene transfer from silylboronic esters to 
alkoxysilanes, where the Si–O bond undergoes insertion of silylene to afford alkoxydisilanes.[2] Based 
on this finding, we envisioned that an efficient silylene transfer system would realize the sequential 
insertion of silylene into Si–O and other σ bonds by means of the use of an excess amount of 
silylboranes. Herein, we describe the synthesis of oligosilanes via the continuous insertion of silylene 
into the Si–O bond of alkoxysilanes and the Si–H bond of hydrosilanes. We found that methoxysilane 
is a suitable alkoxysilane in sequential silylene insertion, and octasilane was given as the longest 
oligosilane when the reaction was carried out with 8 equiv of silylboronic ester. We also found that 
hydrosilanes are efficient acceptors of the continuous insertion of silylene. Details of the reaction will 
be discussed in this presentation. 

 
 

 
             

Scheme 1. Synthesis of Oligosilanes via Sequential Insertion of Silylene into σ Bonds 
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Synthesizing aliphatic carboxylic acids has undergone substantial synthetic innovation from 
early methods requiring stochiometric amounts of harsh, organometallic reagents. Modern 
methods of metal-catalyzed reductive carboxylation reactions of organic halides with carbon 
dioxide feedstocks have shown to be particularly desirable as they offer mild and site-selective 
methods to these precursors.1 Notable advances have been made in nickel-catalyzed 
reactions with alkyl halides and carbon dioxide that functionalize the aliphatic chain at the site 
where nickel is most thermodynamically stable, irrespective of the initial site of the alkyl halide. 
“Chain-walking” type mechanism explains the results obtained in such reports.2,3 As elegant 
as those methodologies are, there is to this day still a lack of possibilities when it comes to 
internal functionalization of unactivated aliphatic sites. Therefore, in realizing such a goal, we 
investigated a protocol that allows for the ipso-carboxylation of unactivated alkyl bromides 
(Figure 1). The ligand choice and homogeneous environment proved critical for its outcome. 

 
 

Figure 1. Ipso-carboxylation of secondary alkyl bromides. 
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In the presence of a palladium catalyst, vinylcyclopropanes (VCPs) readily convert Pd-allyl cation 
intermediate followed by ring-opening of cyclopropanes and act as 1,3-dipoles, which have been 
utilized to construct five-membered cyclic compounds via 1,3-dipolar cycloaddition. This approach to 
generating practical 1,3-dipole has been also used to structure various molecular skeletons, such as 
seven-membered ring systems, multi-fused cyclic compounds, and spiro compounds. In our 
laboratory, cycloadditions of N-aromatic zwitterions have been developed, which provide diverse N-
heterocyclic compounds whiles switching compatible reacting partners in a modular manner. For 
example, we have successfully developed a series of [m + 2] cycloadditions via the cycloaddition 
between N-aromatic zwitterions and 1,n-dipolar species bearing palladium-allyl cation moiety.   
 
In this symposium, we discuss a [3 + 2] cycloaddition of N-aromatic zwitterions and VCPs in the 
presence of palladium catalyst and electron-rich phosphine ligands to afford fused five-membered 
cyclic systems. Also, an asymmetric version of the developed cycloaddition, which gives a wild range 
of N-heterocycles with high enantiomeric excess, is presented. The developed methodology is 
significant in the field of heterocyclic synthesis because it can provide biologically active molecular 
skeletons with a high degree of complexity in a single operation. 
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Figure 1. [3 + 2] cycloaddition of N-aromatic zwitterions and VCPs. 
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Ligand-protected gold nanoclusters show characteristic photophysical properties and 
reactivity much different from those of gold complexes, gold nanoparticles, and bulk gold; thus, they 
are expected to make unique functional catalysts. Thiolate-protected gold nanoclusters have been 
extensively studied due to their thermodynamic stability based on strong gold–sulfur bonds. Among 
them, [Au25(SR)18]– nanoclusters (Au25NC) constructed of Au13 superatomic core surrounded by six 
Au2(SR)3 staples have been applied to various catalytic reactions.1 Several photocatalytic oxidation 
reactions were reported using Au25NC as the photosensitizer generating singlet oxygen. We have 
reported the oxidative cyclization of amino alcohols photocatalyzed by peptide dendron thiolate-
functionalized Au25NCs.2 These photocatalytic properties originate from the photosensitization of the 
Au13 superatomic core, and the surface Au2(SR)3 staples show negligible effect. In contrast, surface 
Au2(SR)3 staples are catalytically active sites for several catalytic reactions, such as A3 coupling.3 
From these backgrounds, there has been no report using both two structural components of Au25NC, 
Au13 superatomic core, and Au2(SR)3 staples cooperatively in catalytic reactions. Here, we report the 
first dual catalysis of [Au25(SR)18]− nanoclusters facilitating photooxidative alkynylation of tertiary 
amines, in which the photosensitization property of Au13 superatomic core and C–C bond-forming 
catalysis of gold–thiolate staples cooperate (Figure 1). 

Typically, tertiary amines and terminal alkynes were reacted in the presence of a catalytic 
amount of Au25NC under an oxygen atmosphere by irradiating visible light at 680 nm, producing 
corresponding propargylic amine products. The scope of the substrate was investigated for amines 
and alkynes, and 16 different propargylic amine products were obtained. As a result, aliphatic tertiary 
amines and aryl- and alkyl-substituted terminal alkynes were revealed to participate in this reaction. A 
ligand-mixed gold nanocluster bearing both thiolate and alkynyl ligands was synthesized to gain 
insight into the reaction mechanism. This nanocluster was confirmed to act as a photosensitizer 
generating singlet oxygen and as a dual catalyst in the photooxidative alkynylation of amine, clarifying 
that alkynyl-substituted Au25NC is the active catalytic intermediate. This presentation will also discuss 
the effect of the peptide dendron thiolate ligand as a supramolecular reaction field and plausible 
reaction mechanism based on experimental and computational studies. 

 

 
Figure 1. Photooxidative alkynylation of amine dual catalyzed by Au25 nanocluster. 
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Palladium(0) is a powerful catalyst for nucleophilic substitution at sp2 carbon-halogen bonds.  Air-
stable palladium(II) precatalysts with a single supporting ligand are convenient precursors to the LPd0 
active species required for these reactions.1  The precatalyst must undergo a reduction process in 
order to be activated.  Our group has explored the use of palladium(II) precatalysts activated by 
external reductants2 as well as those containing reducing ligands.3  For example, palladium(II) 
phosphine complexes with amine ligands provide effective active species for C-N coupling reactions 
(Figure 1).  The identity of the amine ligand has a significant effect on the catalyst performance.  The 
development of these and related complexes, their application, and their mechanisms of activation 
will be presented. 
 

 

 
 

Figure 1. Palladium-amine complexes as precatalysts for C-N cross-coupling 
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The utilization of the nonfossil and nontoxic low value “waste” material carbon dioxide (CO2) has the 
potential to play a key role in designing sustainable future processes and chemicals in chemical 
industry. Among the many interesting and challenging reactions with CO2 the direct C-H 
carboxylation of arenes, enabled by only catalytic amounts of organometallic compounds, remained 
unsolved so far. This reaction, which is therefore often referred to as dream reaction, represents a 
highly atom efficient procedure for the generation of aromatic carboxylic acids - the latter being a 
frequent motive in high value chemicals. Accordingly, this catalytic reaction provides the potential to 
satisfy most of the principles of green chemistry; especially when achieving high turnover numbers, 
chemo- as well as regioselectivity and the avoidance of additional solvents and additives.  
In recent years we have conducted various computational and experimental studies[1] to develop 
active molecular catalysts for the carboxylation of arenes with CO2 and have recently reported on a 
stochiometric reaction.[2] In this work, we present a thorough experimental study on the direct 
catalytic carboxylation of a variety of arenes together with detailed DFT studies for one exemplified 
substrate (Figure 1).[3] 
We show that with sulfonamidophosphane ligands surprisingly active Pd-catalysts can be synthesized 
and applied in direct carboxylations of CO2. The results of catalytic carboxylations for various arenes 
are reported. Both experiments and DFT studies show that electron rich arenes are carboxylated 
easily, while electron poor substrates undergo the reaction with low conversion. 
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Figure 1. Catalytic carboxylation of arenes ([Pd] = molecular palladium catalyst). 
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Enol esters represent an intriguing substance class that has been used as versatile building 
blocks in a variety of reactions such as hydrogenations, polymerizations or in natural product 
synthesis. A synthetic access to highly functionalized enol esters was elaborated, harnessing 
the potential of oxidative gold chemistry. A robust reaction protocol was developed, in which 
ethynylbenziodox- olones (EBXs) transfer both their carboxylate as well as their alkylyl unit 
onto ynamides in perfect atom economy under mild conditions This cascade comprises the in 
situ generation of an alkynyl gold(III) species, a stereoselective C(sp)−C(sp2) bond formation 
and a C−O coupling at the alkynyl position of the ynamides. This transformation tolerates a 
diverse set of functionalities, yielding a broad scope of amide enol 2-iodobenzoates (Figure 
1a). The synthetic potential of the reaction was further demonstrated by several selected 
postsynthetic modifications, leading to a manifold range of highly functionalized compounds. 
Due to its excellent bioactivity profile that is increasingly utilized in pharmaceutical and 
synthetic chemistry, spirooxindole is an important core scaffold. In order to access this 
promising structural motif, an efficient method for the construction of was developed. A gold-
catalyzed cycloaddition reaction of terminal alkynes or ynamides with isatin-derived ketimines 
led to highly functionalized spirooxindoles. Herein, readily available starting materials were 
converted into cyclic carbamates under mild conditions at low catalyst loadings. The great 
compatibility towards a broad range of functional groups led to a vast scope of compounds. 
The underlying mechanistic proposal for the formation of the spirooxindolecarbamates was 
investigated by DFT calculations. Some of the target products exhibit good to excellent 
antiproliferative activity on human tumor cell lines. In addition, one of the most active 
compounds displayed a remarkable selectivity towards tumor cells over normal ones. 
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Figure 1. Gold-catalyzed transformations to enol ethers (Figure 1a) and spriooxindoles 

(Figures 1b). 
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The exploration of shape-persistent bimetallic catalytic frameworks has been undertaken in our 
laboratory. Initially, a series of rigidly linked cofacial bis-(Zn-salphen) complexes was developed that 
functions as efficient catalysts for cyclic carbonate formation from CO2 and epoxides under mild 
conditions. Conformational changes for these frameworks are essentially limited to axial rotation of 
the Zn-salphen moieties; however, such geometric constraints crucially permits subtle tuning of the 
intermetallic separation and geometry to potentially augment catalytic activity (and cooperative 
effects).  
Newly devised Zn2 catalysts have been investigated for CO2-epoxide coupling reactions in 
conjunction with nBu4NI, and selected dibenzofuran-linked derivatives are significantly more active 
than their mononuclear analogues under identical conditions and concentration of Zn sites. High initial 
turnover frequencies (up to 29000 h–1; 14500 h–1 per Zn) and excellent efficiencies under mild 
conditions have been achieved. The molecular structures of key catalysts have been determined by 
X-ray crystallography. Kinetic studies using in-situ (React-IR) spectroscopy and DFT calculations 
have been performed to examine the reaction mechanism; the former reveal the existence of an 
intramolecular rate component, while the latter indicate a preference for the intramolecular, 
cooperative pathway as well as transition states that depict the Zn sites operating in tandem. Taken 
as a whole, these results provide strong evidence of cooperative reactivity for these bimetallic 
catalysts.  
New developments regarding shape-persistent multinuclear frameworks that can mediate catalytic 
reactions with enhanced efficiency and cooperativity will be presented.  
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Alkali metal alkyl reagents are essential tools in synthetic chemistry. Alkali metal organometallics 
aggregate in solution and solid-state. The relationship between structure and reactivity has been of 
great interest for many decades and, in general, by breaking the alkali metal organometallics into 
smaller aggregates, the reactivity can be increased.1 The monomeric organosodium complex 
[Na(CH2SiMe3)(Me6Tren)] (1-Na) was found to exhibit a distinct reaction pattern in sharp contrast with 
its organolithium counterpart [Li(CH2SiMe3)(Me6Tren)] (1-Li) (methylenation vs nucleophilic addition). 
Moreover, using 1-Na as a platform, the versatile reactivity of organosodium complexes depending on 
their aggregate sizes (monomer vs polymer) and nature of incoming substrates was demonstrated 
(Figure 1a). Based on these observations, ligand-catalyzed ketones/aldehydes methylenations were 
designed using [NaCH2SiMe3]∞ and catalyzed by as low as 5 mol% of the Me6Tren ligand (Figure 
1b).2,3 

 
 

Figure 1 (a) Divergent reaction patterns between organosodium and organolithium 
complexes and organosodium polymer vs monomer. (b) Ligand-catalysed C=O bond 

methylenation. 
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α-Chiral primary amine subunits are widespread structural units in numerous pharmaceutical 
molecules and are key intermediates toward the preparation of many amine-containing drugs.1 
Additionally, chiral primary amines can serve as ligands or organocatalysts which can be applied in 
organic synthesis. Therefore, efficient synthetic routes toward chiral primary amines have attracted 
tremendous attention. Asymmetric chemo-catalytic reactions that are capable of directly preparing 
chiral primary amines remain scarce. Transition-metal-catalyzed asymmetric reductive amination2 
(ARA) using ammonium salts as the amine sources can directly yield chiral primary amines from 
prochiral ketones and are thus highly attractive and of great significance. This reaction faces several 
major challenges, including: (1) the presence of competitive ketone reduction as the side reaction; (2) 
NH3 or the produced primary amines can coordinate to the metal center which results in catalyst 
poisoning effect; (3) the coordination of amine ligand to the metal center may lead to ligand exchange 
that enhances the challenge on asymmetric control; (4) the produced primary amines may undergo 
further alkylation process via double reductive amination. Aiming to solve these challenges and extent 
the applicable scope of this important reaction, we have carried out systematic studies in the last five 
years.3 Now, simple aryl alkyl ketones, α- or β-functionalized ketones, diary ketones can be directly 
transformed to the corresponding chiral primary amines in excellent enantioselectivities.  
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Figure 1. Summary of asymmetric reductive amination with ammonium salts from our team. 
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The field of organic materials is expanding and the interest in synthesizing novel, suitable 
structures is increasing.[1] PAHs (polycyclic aromatic hydrocarbons), especially cyclopenta-
fused PAHs (CP-PAHs) are known for being potential candidates in the application of OFETs 
(organic field effect transistors) or OLEDs (organic light emitting diodes).[2] We reported on 
the synthesis of various PAHs[3] and also on the cyclization of 1,8-diyne systems towards 
indenophenalene derivatives containing the CP-PAH subunit.[4] Based on the ongoing 
interest of obtaining novel (CP-)PAH structures, we present the gold(I)-catalyzed[5] cyclization 
of novel triene-yne systems performing a formal [4+2] cycloaddition (Figure 1). Both, the 
substrate and the target molecules, are first time reported and easily available in 3- to 4-
steps synthesis using mild conditions. Besides the application in organic electronics, the 
target molecules can be implemented in biological research based on cancer risks. 
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Figure 1. Gold(I)-catalyzed cyclization of triene-yne systems bearing a benzofulvene moiety. 
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Amines are a family of chemical compounds of great importance due to their applicability in very 
diverse fields such as the purification of industrial gases or pharmaceutical products.1 The 
development of efficient green chemistry methods for their syntheses is important and of industrial 
relevance. Hydroaminoalkylation is an atom-economic method to produce new amine species via the 
functionalization of α C-H bond of amines by reacting with alkenes (Figure 1).  
 
Knowledge of the mechanism of this reaction is the clue to controlling and improving the regio- and 
diastereoselectivity of this process. Early transition metals can be exploited to realize enhanced 
reactivity and exquisite control.  
 
N,O-chelated early transition metals are state-of-the-art hydroaminoalkylation catalysts known to 
promote reactivity via the hemilability of the ligands.2 Ferrocene complexes offer modular ways to 
change their steric and electronic properties as well as high thermal stability.3 This work explores the 
synthesis, structure and reactivity of new ferrocene substituted N,O-chelated ligands and their early 
transition metal complexes for realizing advances in enhanced and selective reactivity. 
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Figure 1. Hydroaminoalkylation reaction mediated by early transition metals. 
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Compared to synthetic approaches for typical cyclic systems, methods for constructing medium-

sized cyclic compounds, especially eight-membered cyclic compounds, have been less explored due 
to unfavorable thermodynamics. Although eight-membered heterocyclic compounds are prevalent in 
natural products, biologically active molecules, and functional materials, their synthesis often requires 
tedious and complex stepwise reactions, rather than modular methods. Previously, we developed a 
new type of reactant, N-aromatic zwitterions, for the construction of medium-sized heterocyclic 
compounds in a modular manner. In addition, we demonstrated that N-aromatic zwitterions can 
undergo regiodivergent cycloadditions, depending on the nature of the reaction partners. Specifically, 
when the zwitterion reacts with LUMO-controlled amphiphilic reactants, it undergoes [5 + n] 
cycloadditions, whereas, in the presence of HOMO-controlled dipolar species, regiodivergent [m + 2] 
cycloadditions occur1, 3. For example, the reaction of N-aromatic zwitterions with Pd-TMM underwent 
a [3 + 2] cycloaddition reaction via regioselective 1,4-dearomative addition of Pd-TMM2.  
 

In this symposium, we introduce a new strategy for a [5 + 3] cycloaddition of N-aromatic zwitterions 
and π-allyl precursors in the presence of palladium catalyst, which ensures diversity that differs from 
previous reports. Under the typical reaction conditions for the generation of Pd-allyl species, the 
additional use of zinc salt resulted in a transmetallation, affording the Zn-allyl intermediate. It readily 
chelated with the N-aromatic zwitterion, switching its regioselectivity which resulted in [5 + 3] 
cycloaddition, not [3 + 2] cycloaddition. The key intermediate was isolated and fully identified, proving 
the reaction mechanism involved in the formation of the Zn-allyl complex. In addition, we 
demonstrated the potential of this strategy for synthesizing large cyclic compounds, otherwise difficult 
to construct. 
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Figure 1. Regioselective cycloadditions of N-aromatic zwitterions and π-allyl species. 
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Alkyl halides are known as important and versatile compounds in synthetic chemistry because they 
are not only synthetic intermediates for synthesis of pharmaceuticals and functional materials but also 
are themselves found in the structure of pharmaceuticals and natural products. Hydrohalogenation of 
alkenes using hydrogen halides has been known as a straightforward and atom-economical 
approach to alkyl halides. Due to the strong acidic conditions originated from hydrogen halides, 
conventional methods suffered from low functional group compatibility. As a strong acid-free method, 
Carreira and a coworker reported cobalt-catalyzed hydrochlorination of alkenes using hydrosilane and 
tosyl chloride as hydrogen and chloride sources, respectively.1 The reaction involvles cobalt hydride-
mediated metal hydride hydrogen atom transfer to an alkene and chlorination of the resultant alkyl 
radical by tosyl chloride. While the reaction proceeds under mild and strong acid-free conditions, it 
requires stoichiometric amounts of reductants and oxidants, resulting in low atomic efficiency. 
Herein, we report a photoredox/cobalt dual catalysis2 enabling Markovnikov selective 
hydrohalogenation of alkenes under blue LED irradiation conditions (Figure 1). Since this protocol 
allows to use 2,4,6-collidine hydrogen halide as hydrogen and halide sources, strong-acid free and 
mild reaction conditions are achieved. The cooperativity of photoredox and cobalt catalyst enables to 
deliver a hydrogen atom to alkene and oxidize the alkyl radical to carbocation equivalent. Modification 
of counter anion of 2,4,6-collidine hydrogen salt leads to introduce various halogen atoms, such as 
fluorine, chlorine and bromine to alkene, producing highly functionalized alkyl halides. Acid-sensitive 
functional groups including methoxymethyl, ester, silyl ether, and carbamate are tolerated. 
 

 

 
 

 
 

Figure 1. A photoredox/cobalt dual catalysis enabling hydrobromination of alkenes 
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Allene is a versatile building blocks to construct complex molecular scaffolds in natural 
products and pharmaceuticals.1 In recent years, transition metal-catalyzed 1,4-alkylarylations of 1,3-
enynes have been proved a powerful strategy for the efficient synthesis of multi-substituted allenes.2 
Kambe and Terao reported the first nickel-catalyzed regioselective three-component coupling of alkyl 
halides, 1,3-enynes, and dialkylzinc reagents in 2009.2a In 2019, Bao and coworkers reported a 
copper-catalyzed radical 1,4-alkylarylation of 1,3-enynes using peroxides additive to trigger the 
generation of the corresponding radical species.2c Although the first-row transition metal catalysts 
improved and complemented this reaction based on the single electron transfer process, only a few 
reports have been published to this date.3 Herein, we report the first iron-catalyzed radical 1,4-
alkylarylation of 1,3-enynes with arylborates and unactivated alkyl electrophiles to afford multi-
substituted allenes (Scheme 1). 

The three–component coupling reaction proceeds smoothly under mild conditions in the 
presence of catalytic amounts of iron–NiXantphos complex and magnesium bromide, providing the 
corresponding multi-substituted allenes in good to excellent yields (Figure 1). Investigation on the 
substrate scope revealed the tolerance of a wide range of arylborates with various functional groups 
and sterically hindered substituents. Especially, some heterocyclic groups such as 2–thienyl also 
participated in this reaction, furnishing the allene product in excellent yield. Screening of alkyl 
electrophiles clarified that tertiary alkyl halides gave higher yields than secondary and primary alkyl 
halides. This result suggests that the stability of the alkyl radical has great impact on the reaction 
yields. Various alkyl and silyl substituented 1,3-enynes take part in the reaction to give high yields of 
the corresponding allene products albeit poor yields with the aryl substituents. Mechanistic studies 
using radical scavengers and radical clock substrates proved that this reaction proceeds with radical 
chain pathway started from alkyl radical intermediates. We will report detailed ligand screening, scope 
of substrates, and discuss the possible reaction mechanism in the poster presentation.  
(311 words) 
 

  
Figure 1. The first iron-catalyzed 1,4-alkylarylation of 1,3-enynes with arylborates and alkyl 

halides. 
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Developing efficient artificial catalysts comparable to the biocatalysts such as enzymes has been a 
difficult challenge for studying enzyme mimics. The studies reported here are related to the design, 
synthesis, structural analysis by X-ray crystallography and kinetic studies of Zn(II) complexes 
designed to catalyze the hydrolysis of p-nitropheyl acetate (pNPA), and the identification of the 
mechanism of the carboxyester hydrolysis reaction. The fact that the introduction of a 6-
hydroxymethyl substituents to a tris(2-pyridylmethyl)amine (TPA) ligand leads to an increase or loss 
of reactivity was explained in relation to the coordination structure of the Zn(II) complex. Actually, 
when the 6-hydroxymethyl substituent was coordinated to the Zn(II) ion or not, the effect on pNPA 
hydrolysis was very large. In the case of the presence of one 6-hydroxymethyl substituent, about 150-
fold increase in pNPA hydrolysis rate was shown. We analyze the structure of Zn(II) complexes 
according to the number of 6-hydroxymethyl substituents and explain the pNPA hydrolysis 
mechanism. This work proposes a new strategy for the development of more efficient metal ion-based 
artificial catalysts and suggests possible modes of action for metalloenzymes. 
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Figure 1. Zn(II) complexes of TPA and 6-hydroxymethyl substituted TPA and their pNPA 
hydrolysis. 
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Controlling regio- and stereoselectivity of transition metal-catalyzed nitrenoid transfer reactions is 
highly desirable, especially in C–H functionalization reactions.1 Herein, we report the development of 
a new chiral catalyst system toward intramolecular C–H nitrene insertion of dioxazolones to afford 
medium-sized cyclic amides, thus affording a wide range of lactam molecules with high regio- and 
enantioselectivity. Mechanistic investigations revealed that the new catalyst system plays a crucial 
role in both regio- and enantioselectivity-determining steps. Additionally, we demonstrated the 
synthetic values of this protocol through the implementation of concise routes for the total synthesis of 
natural products and drug molecules. 
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Figure 1. Intramolecular regio- and enantioselective nitrene transfer 
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Metal carbides are special organometallic species bearing only metal–carbon bonds on the carbide 
center and expected to show various reactivities due to the unique structure. Reduction of carbon 
tetrabromide with chromium(II) bromide in THF resulted in formation of a dinuclear chromium carbide 
complex.1 Treatment of terminal alkenes as well as cyclic 1,3-dienes with the chromium carbide 
resulted in double-cyclopropanation to afford spiropentanes, implying the chromium carbide to have a 
double-carbene character. In contrast to the double-cyclopropanation reactivity of the chromium 
carbide with alkenes, reaction of the carbide complex with alkynes afforded mononuclear 
cyclopropenylidene complexes, which have been characterized by X-ray analysis and IR 
spectroscopy. Akin to the formation of the cyclopropenylidene species from the chromium carbide and 
alkyne, the cyclopropylidene species could be formed via monocyclopropanation of the chromium 
carbide and alkene. Trapping the cyclopropylidene intermediate by treatment with aldehyde and 
ketone yielded alkylidenecyclopropanes. 

 
 

 
 

Figure 1. Generation of a Chromium Carbide and Double-Carbene Reactivity. 
 
 
 

Reference 
[1] Kurogi, T.; Irifune, K.; Takai, K. Chromium carbides and cyclopropenylidenes. Chem. Sci. 2021, 
12, 14281-14287. 
 



130 | OMCOS XXI Symposium | July 24 – 28, 2023   
  

PS 68 

 
Α-Amino Acid and Peptide Synthesis using Catalytic  

Cross-Dehydrogenative Coupling 
 

Taro Tsuji,a Kayoko Hashiguchi,a Mana Yoshida,a Tetsu Ikeda,a Yunosuke Koga,a 
Yusaku Honda,a Tsukushi Tanaka,a Suyong Re,b Kenji Mizuguchi,b,c Daisuke 

Takahashi,a Ryo Yazaki,a Takashi Ohshima*a 
a Kyushu University. b NIBIOHN. c Osaka University. 

 
Email: tsuji.taro.355@s.kyushu-u.ac.jp; ohshima@phar.kyushu-u.ac.jp 

 
Ionic or radical α-amino Schiff base methods are well known for the synthesis of α,α-disubstituted α-
amino acids.1–4 However, the incorporation of sterically demanding groups is challenging with ionic 
methods, and radical methods require prefunctionalization of the substrates.  
 
We have developed a dehydrogenative coupling process of α-amino acid Schiff bases with 
hydrocarbon feedstocks for the synthesis of α,α-disubstituted α-amino acid derivatives (Figure 1).5 
These α-amino acid derivatives were transformed into C- and N-protected amino acids, which could 
be easily incorporated into peptide synthesis. A range of α-amino acid derivatives could be readily 
accessed, which includes, notably, those that bear contiguous quaternary centers. Circular dichroism 
measurements show that the helical peptide structure is stabilized by the highly sterically congested 
unnatural α-amino acid. Mechanistic studies revealed that deprotonation of the α-amino acid Schiff 
base is a turnover-limiting step. 
 

 
 

Figure 1. Summary 
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Carbones (LCL) have emerged recently as a new class of organic molecules featuring 
carbon(0) directly stabilized by two electron-rich groups (L) through Lewis donor-acceptor 
interaction.1 Other mesomeric features can also be understood in terms of allenic or 
zwitterionic form (see Figure 1).  Owing to the peculiar bonding situation and the zero-valent 
nature of the central atoms, carbones have attracted much attention in the chemical 
community as NHC alternatives because their strong σ-donating ability broadly impacts 
transition-metal coordination, small molecule activation, main-group chemistry, redox non-
innocent coordination, and catalysis.2 This presentation will describe the synthetic 
preparation and chemical properties of the carbone as well as its application toward 
supporting metallic complexes for catalysis in tandem photoredox, cross-coupling reaction 
via tandem C-H and C-O bond activation and a new spin in diversifying FLP reactivity with 
co-modulator benzyl alcohol. 
 

 
Figure 1. Mesomeric form: bonding situation of carbones. 
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Amides are omnipresent in our daily life and can be found in pharmaceuticals, natural products, and 
active ingredients in crop protection.[1] The direct synthesis of the amide bond, especially with the less 
nucleophilic aniline derivatives are still scarce. A novel, atom-economic protocol for Lewis acid 
catalyzed synthesis of anilides is presented, using a readily available and inexpensive base and earth 
abundant Lewis acid catalysts (e.g. (MnCl2, ZnCl2, BiCl3) at low loadings – without the need of an 
additional ligand. A broad range of electronically diverse anilines was reacted with a variation of 
unactivated benzyl and alkyl ester in moderate to good yields. The shown reaction can be 
successfully scaled up to 50 mmol without loss in efficiency. 
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Figure 1. Mn-catalyzed Amidation of Unactivated Methyl Esters by Aminolysis.  
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The recent discovery of gold(I)/gold(III) redox chemistry greatly transcends cationic gold 
chemistry from simple π-acid catalysis, which serves a powerful tool for C-C or C-X bond 
construction. However, with the high oxidation potential between Au(I) and Au(III), ca. ~1.4 
eV, gold redox catalysis required the application of strong oxidants with at least 
stoichiometric amount. Therefore, to achieve gold redox catalysis under mild conditions, with 
low cost and mild oxidants, is highly desired to make the overall process practical with 
improved functional group tolerability.  Herein, we disclosed novel approaches to facilitate 
oxidation of Au(I) to Au(III) through 1) Aryldiazonium salts as the mild coupling partner/ 
oxidant, gold catalyzed cross-coupling reactions are accomplished without any external 
oxidants under photocatalyst-free condition. 2) Employing sulfonium or diselenium cation as 
mild oxidants for the alkyne functionalization. 3) Electrochemical approach in promoting gold-
catalyzed oxidative coupling.1 These approaches open an opportunity for gold redox 
catalysis. 
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Organometalloids with boryl or silyl moieties are valuable building blocks in organic chemistry, 

due to their great reactivity in C-C bond-forming couplings, and other demetallation reactions.1 On the 
other hand, organofunctional silanes bearing silicon atoms with readily hydrolyzable groups play a 
pivotal role in material chemistry. Such reagents can form stable bonds with both polymers and 
inorganic substances and thus are applied as dispersing agents, adhesion promoters, and silane 
coupling agents (SCAs).2 The SCAs’ global market is projected to reach USD 1.6 billion by 2026, 
emphasizing their importance for various sectors of industry (coatings, adhesives, rubbers, etc.). The 
addition of a filler-silane system along with carbon black to elastomers significantly improves rolling 
resistance and wet grip properties of tire rubbers, which is manifested in reduced fuel consumption, 
lower CO2 emissions to the atmosphere, and higher driving safety. Therefore, new sustainable 
methodologies for the synthesis of organometalloids are sought by organic and material chemists. 

Hydroelementation (hydroboration, hydrosilylation) of unsaturated substrates represents a 
straightforward, and reproducible way to synthesize a wide array of organoboranes and 
organosilanes with 100% atom economy. Traditionally, these transformations are carried out in the 
presence of transition metal catalysts, which ensure the formation of products with high yield and 
selectivity.3 

Herein, we would like to present three catalytic hydroelementation protocols leading to novel 
organometalloid reagents (M = B or Si). Ru-catalyzed monohydroboration of 1,4-diarylbuta-1,3-diynes 
was developed to be efficient in the synthesis of stereodefined boryl-substituted enynes, applicable as 
substrates in Suzuki coupling or polymerization reactions.4 Other two works focused on the synthesis 
of a library of 45 bio-based bifunctional organosilanes via Ir-catalyzed regio- and chemoselective 
hydrosilylation of naturally-occurring terpenoids.5-6 Catalyst screening, the scope of substrates, and 
application tests as coupling agents in the synthesis of tire rubber composites will be demonstrated 
within this communication. Synthesized products with boron and silicon groups might be considered 
versatile reagents in organic and material chemistry. 
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Transition-metal catalyzed functionalization of C−H bonds has been one of the most efficient and 

reliable synthetic tools for the formation of C−C bonds.[1] In particular, controlling the chemo-, stereo-, 
and regioselectivities over the sites of functionalization is a highly challenging yet important goal, 
wherein the reaction pathway could be precisely controlled to result in structurally different products 
from the same reactant(s). Herein, we present the first example of catalyst-controlled divergent 
functionalizations of C(sp3)−H/C(sp2)−H bonds in intramolecular metal-carbenoid insertion reactions 
of α-diazoamides having an ester group (Figure 1). In the presence of a rhodium catalyst, the in situ 
generated rhodium-carbenoid undergoes insertion into the C(sp3)−Ha bond to furnish β-lactams. In 
contrast, in the presence of a palladium catalyst, the functionalization of aromatic C(sp2)−Hb bond is 
dominantly occurred to afford indolin-2-one derivatives. Moreover, it was found that the selectivity is 
largely be determined by the presence of an ester group within diazoamides. DFT calculation 
provided insight into the role of ester functionality in such selectivity. 
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Figure 1. Catalyst-controlled Divergent C−H Bond Functionalization of α-Diazoamides 
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Since the introduction of fluorine atom into organic molecules improves their lipophilicity, metabolic 
stability, and biological activity, organofluorine compounds have attracted significant attention in the 
design of pharmaceuticals and agrochemicals. In particular, trifluoromethyl group (CF3) is frequently 
found in biologically compounds. Therefore, the development of efficient synthetic methods for CF3-
containing organic molecules is highly desired. We recently achieved the synthesis of α-
trifluoromethylamines by the copper-catalyzed regioselective hydroamination of 1- 
trifluoromethylalkenes with hydrosilanes and hydroxylamines (Figure 1a).[1] In this reaction, the 
judicious choice of ligand and base selectively promoted the hydroamination reaction even with the 
possibility of undesired β-F elimination from an α-trifluoromethyl organocopper intermediate.[2] 
Based on the aforementioned strategy, herein, we disclose the copper-catalyzed regio- and 
enantioselective hydroallylation of 1-trifluoromethylalkenes with hydrosilanes and allylic chlorides 
(Figure 1b).[3] Also in this case, the appropriate choice of base can suppress the β-F elimination from 
α-CF3 organocopper intermediate, giving the corresponding hydroallylation product in a good yield. 
Additionally, the regio- and stereoselective allylboration of 1-trifluoromethylalkenes is also achieved 
by using bis(pinacolato)diboron instead of hydrosilanes (Figure 1c).[4] The addition of in situ generated 
boryl copper species and subsequent trapping with the allyl chloride can introduce two functional 
groups into the 1-trifluoromethylalkene simultaneously. 
 

 
Figure 1. Catalytic functionalization of 1-trifluoromethylalkenes 
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Silylene (:SiR2) is a divalent chemical species of silicon and is useful for the formation of two 
silicon-containing sigma bonds simultaneously. For the development of synthetic methods utilizing 
silylene, it is desirable to accumulate new findings on the efficient generation of silylene and to 
expand the reaction partners of silylene. We focused on triorganohydrosilanes as a new synthetic 
equivalent of silylene1, because these are thermally stable and easy-to-handle compounds. 

Herein, we report an iridium-catalyzed intramolecular transfer of silylene generated from 
triorganohydrosilane. We found that 2-(dimethylsilyl)methoxybenzene (1) was converted to 
(trimethylsilyl)oxybenzene (2) efficiently in heated toluene in the presence of an iridium catalyst. In 
this conversion, dimethylsilylene (:SiMe2) was released from the hydrodimethylsilyl group, and the sp3 
carbon–oxygen bond of the methoxy group underwent insertion of the silylene. In this presentation, 
we will discuss in detail the catalytic conditions under which the reaction proceeds efficiently, the 
scope of substrates, and findings on the reaction mechanism. 
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C(sp3)−H bond functionalization has received considerable attention as an atom-economical 
method for increasing the molecular complexity with simple modifications.1 Although the selective 
activation of C(sp3)−H over other ubiquitous C−H bonds is highly challenging, the benzylic C(sp3)−H 
bond exhibits potential for the generation of reactive radical intermediates because of its smaller bond 
dissociation energy.2  Based on this, precisely predicting the reaction regioselectivity, particularly for 
complex arenes and heteroarenes bearing benzylic-type C(sp3)−H bonds, is difficult.  

This work represents the first use of a FeIII(phen)3 complex for single-electron oxidation to afford 
an arene radical cation in which N-heteroarenes and benzene derivatives were differentiated 
according to their oxidation potential.3 The stability of the radical intermediate originates from the 
captodative effect of the electron-donating N-heteroarene and electron-withdrawing carbonyl groups. 
This strategy exhibits a difference in reactivity between N-heteroarenes and benzene, which is difficult 
to achieve via direct hydrogen abstraction approaches. We anticipate that this sustainable Fe(II) 
redox catalysis will be applicable in future diverse synthetic strategies, and the late-stage 
functionalization is expected to promote new protocols in Fe catalysis. 
 

 
Figure 1. Chemoselective azidation by indole radical cation 
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Li-ion Batteries (LIBs) have revolutionized the portable electronics market and are now aiding the 
electrification of vehicles. Film-forming electrolyte additives are crucial for establishing high-energy 
lithium-ion batteries (LIBs) to the market. Electrolyte additives that aid the formation of SEI are one of 
the popular strategies to enhance the overall performance and safety features of the battery. Our 
group, joint with the MEET (Münster Electrochemical Energy Technology), established a class of 
electrolyte additive: the “N-carboxy anhydrides” (NCAs) that shows great improvement in overall 
battery performance1. In this work, several derivatives of N-carboxyanhydrides were synthesized to 
distinguish relevant substrate parameters crucial for polymerization and film formation and evaluated 
in LiNi0.8Co0.1Mn0.1O2 || Si/graphite cells. Electrochemical performance and laser desorption/ionization 
mass spectrometry analysis are conducted to elucidate underlying decomposition mechanisms and 
dependency on functional moieties. Using this study, structural understanding of electrolyte additives 
can be improved and it will aid in the systematic design of additives in future. 
 

 
 

Figure1.Effect of different structural features of N-Carboxy Anhydride on the performance of 
Li-ion battery 
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The use of renewable energy is central for the realization of a circular economy and will constitute the 
basis for further global economic development. In this respect, the implementation of a green 
hydrogen economy is intensively investigated. In a future hydrogen economy, also CO2-based 
hydrogen storage materials and technologies play an important role.[1] In this context, we propose 
the previously overlooked, industrially available bulk chemical methyl formate (MF) as a new 
hydrogen carrier. Surprisingly, the ruthenium pincer complex ([Ru(H)(CO)Cl(PNPPh)])-catalyzed 
aqueous phase MF dehydrogenation proceeds at a much higher rate compared to established 
hydrogen energy carriers and ester ingredients methanol (20 times) and formic acid (5 times, Figure 
1) under identical mild conditions. [2] 

 

Figure 1. Comparison of MeOH, FA and MF dehydrogenation. 
 

These unexpected results prompted us to conduct a more in-depth study on the mechanism of MF 
dehydrogenation including NMR-investigation, X-ray analysis of the key species as well as DFT 
calculations. The dehydrogenation of MF might occur via two routes: (a) direct MF dehydrogenation 
or (b) by MF hydrolysis followed by dehydrogenation of formic acid and methanol.  Mechanistic      
investigations including KIE measurements, DFT calculations, synthesis and crystallization of   
intermediate species, NMR studies, and time-resolved product analysis proof a direct MF        
dehydrogenation pathway including [Ru(H)(CO)OCOOCH3(PNKPPh)] as key intermediate. Additionally, 
the generation of up to four moles of hydrogen and two moles of CO2 was proven and long-term 
experiments resulted in remarkable pressures of 70 bar (2 h) and 128 bar (10 h), as well as catalyst 
turn-over numbers TON(H2) >107,000 and frequencies TOF(H2)max >44,000 h-1. 
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Promoting magnetic interactions in lanthanide-based single-molecule magnets (SMM) is an ongoing 
challenge in the field of molecular magnetism. To overcome the lack of strong magnetic 
communication between Ln(III) ions, which stems from the core-like electron density of the 4f orbitals, 
employment of paramagnetic bridging ligands as a direct exchange pathway is a promising avenue. 
[1,2] With the aim to synthesize such strongly coupled complexes, we sought to utilize for the first 
time in lanthanide metallocene complexes, pyrazine (pyz) as a bridging ligand. Due to its redox active 
sixmember ring, incorporation of the radical pyz•- in lanthanide metallocenes afforded a dinuclear 
family of lanthanide metallocenes [Cp*2Ln)2(pyz•-)(THF)2][BPh4] (Cp* = 
pentamethylcyclopentadienyl; THF= tetrahydrofuran; Ln = Gd; (1), Dy; (2)) which upon removal of the 
coordinated THF served as a building block for isolating the tetranuclear family [(Cp*2Ln)4(pyz•-
)]·5THF (Cp* = pentamethylcyclopentadienyl; Ln = Gd; (3), Dy; (4)). Strong magnetic exchange 
coupling was observed in 1 where JGd-rad = -22.2 cm-1, which to this day is the highest exchange 
coupling in Gd complexes mediated by an organic monoanionic radical. This in combination with the 
high performing [Cp2*Dy] + units of in 2 and 4 led to zero-field SMM behaviour with an energy barrier 
of Ueff = 111 cm-1 and 140 cm-1 respectively. Hysteresis measurements of 4 showed a giant 
coercive field of 65kOe. To the best of our knowledge this is the highest coercive field, yet reported, 
for any Dy-based radical-bridged metallocene.  
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Pincer complexes have stood out as useful tools in catalysis.1, 2 In particular, pincer ligands with N-
heterocyclic carbene (NHC) fragments have exhibited some interesting features. Since NHCs are 
very strong donor ligands, that enhance the nucleophilicity of a metal center, thus generating very 
active catalysts.3 However, in the realm of Au(I) and Au(III) chemistry, the use of NHC-pincer ligands 
remains scarcely explored, and only a few examples have been described.4 Actually, in the literature 
there are no examples of C(NHC)-C(Aryl)-C(NHC) gold pincer complexes, for which interesting reactivity is 
envisioned. Probably one of the reasons is the lack of synthetic strategies to coordinate the metal 
fragment to such type of pincer ligands. Up to now there are two main strategies to prepare C(NHC)-
C(Aryl)-C(NHC) metal-pincer complexes. The C-H or C-halogen bond activation, and the transmetalation 
from Zr or Li derivatives. Both strategies have drawbacks, for example the bond activation requires 
high temperatures, while the transmetalation reaction requires very anhydrous conditions and the use 
of organolithium compounds. 
 
Here we report a new approach to obtain C(NHC)-C(Aryl)-C(NHC) gold pincer complexes (Scheme 1a). The 
activation of an aryl-diazonium salt (L-N2) through an oxidative addition of the C-N2 bond enabled the 
coordination of the pincer ligand to the gold atom. The synthesis of L-N2 was carried out in three 
steps starting from 1,3-bis(bromomethyl)-2-nitrobenzene in 64% yield. Finally, the catalytic activity of 
the complexes, was evaluated in the synthesis of oxazolines and phenols (Scheme 1b). 

 

 
Figure 1. a) Synthesis and b) catalytic activity of C(NHC)-C(Aryl)-C(NHC) gold(III)-pincer 

complexes. 
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Weak intermolecular interactions are of paramount importance for the formation of certain 
supramolecular units in molecular crystals [1,2]. Typically, diastereomers have distinguishable 
chemical and physical properties and can therefore be separated by fractional crystallization making 
use of their different solubility. In a 1:1 co-crystallization of two diastereomers, intermolecular 
interactions ensure the formation of a defined molecular recognition motif [3,4]. In order to get control 
over crystallization processes and the separation of stereoisomers, it is therefore crucial to better 
understand the mechanisms of stereoisomeric co-crystallization and to identify the involved 
intermolecular interaction modes [5]. 
Fractional crystallization of a mixture of diaminocyclosilane diastereomers resulted in either a 1:1 co-
crystal with both diastereomers in the asymmetric unit (Figure 1) or in the crystallization of a pure 
diastereomer, depending on the solvent mixture used. A molecular recognition motif was identified. It 
was also investigated how the substitution pattern and the solvent affects the stereoisomeric co-
crystallization. The insights gained from these studies can be crucial for understanding fundamentally 
important nucleation processes and provide tools for the design of functional supramolecular entities. 
 

 
 

Figure 1. Identification of specific intermolecular interaction patterns responsible for the 1:1 
co-crystallization of diastereomers. 
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Within the past decade, the combination of potassium alkoxide bases and silicon hydride species has 
been reinvestigated, not for their hydridic properties but rather the unique myriad of transformations 
they promote which are thought to occur through exotic silicon-based intermediates proposed in the 
literature.1 Recently our group disclosed the TMDSO and KOtBu mediated de-trifluoromethylation of 2-
trifluoromethylpyridines which proved to be chemoselective for trifluoromethyl groups located at C2.2 
Preliminary mechanistic experiments point towards a silicon-derived hydrogen atom donor, and single 
electron donor capable of reducing electron deficient π-systems, and vinyl arenes. Further exploitations 
of this unique reagent combination led to a serendipitous discovery enabling the hydroalkylation of 
vinyl-arenes in the presence of alkyl-halides, through what we suspect is a vinyl-arene derived 
nucleophilic intermediate.  

 

 
Figure 1. TMDSO and KOtBu promoted de-trifluoromethylation and hydroalkylation 
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The first papers showing a high increase in molecular complexity in gold-catalyzed organic reactions,1 
triggered the development of homogeneous gold catalysis to a frequently used tool in different sectors 
of organic synthesis, e.g. for total synthesis2 or materials science.3 The important influence of reactive 
intermediates like gold vinylidene intermediates4 or other functionalized gold carbenes5 on the 
outcome of gold-catalyzed reactions is well documented. Most of these reactions are based on polar 
reactivity, i.e. the reaction of nucleophiles with electrophiles. 
The recent revival of photochemical conversions also led to an exploration of combinations of 
photoredox catalysts with other transition metal catalysts, among the latter also gold catalysts. Apart 
from such combinations of two catalysts, there already existed earlier work on photoredox catalysis 
by dinuclear gold(I) complexes, the first examples of “gold only” catalysis.6  
Beyond new examples and insights into catalysis with such dinuclear gold(I) complexes, the 
contribution will also address photochemical conversions involving mononuclear7 gold(I) complexes 
(Figure 1). This will include mechanistic studies and computational studies of these systems and 
reveal an exciting combination of a gold-based catalytic cycle involving two one-electron redox 
reactions at gold with a radical chain. 
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Figure 1. “Gold only” dinuclear (left) and mononuclear (middle) catalysts for photochemical 
reactions and the mechanistic riddle of mononuclear gold(I) photoreactions (right). 
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Various N-(2-bromo-allyl) benzamides were used as the starting materials to study vinyl 
radical ipso cyclization reactions. The vinyl radicals underwent ipso-cyclization, aryl 
migration, and recyclization, and unsaturation reactions to produce β-aryl-γ-lactams with the 
carbonyl group remaining intact. To further study this cascade radical reaction, vinyl radicals 
were generated by the addition of a tributyltin radical to alkyne moieties, followed by radical 
ipso-cyclization, aryl migration, recyclization, and β-scission reactions with the production of 
a series of α,β-unsaturated-β-aryl-γ-lactam derivatives. This new type of radical reaction was 
further applied to produce therapeutic agents for neurodegenerative diseases, such as 
rolipram and phenylpiracetam.  
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Figure 1. New synthetic methodology for GABA drugs. 
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Fluorine is present in 43% of total registered synthetic drugs due to its favorable effect on the 
metabolic stability of drug molecules.1 Its prevalence in small molecules makes fluorination method 
development an important area of research. However, current methods often require harsh 
conditions, prefunctionalized substrates, or limited functional group tolerance.2 In this work, we are 
targeting aryl halides as a commercially available and synthetically ubiquitous substrates. Herein we 
present a room temperature, metal mediated, visible light-initiated fluorination of aryl halides. 
Additionally, we provide initial insight into the mechanism and scope of this transformation. 
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Figure 1. Photofluorination of aryl halides. 
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Porphyrins and metalloporphyrins have been used extensively in photochemical reactions throughout 
the last several years1. This is due to porphyrins inherent ability to act as a photosensitizer. A type of 
photocatalytic reaction, where porphyrins are underrepresented, is the Hydrogen Atom Transfer 
(HAT) reaction. By utilizing photocatalytic HAT reactions it is possible convert C-H bonds to C-C 
bonds. Recent studies have presented metalloporphyrins as HAT catalysts for this purpose2. The goal 
of this study has been to develop, characterize and test new metalloporphyrin complexes with 
transition metals. Metals used include the early d-block elements titanium, vanadium, chromium, 
molybdenum and tungsten. The catalysts have been investigated in test reactions and by Density 
Functional Theory (DFT), to evaluate the potential reaction mechanism.  
This new class of photocatalysts are easily available from commercial starting materials and has the 
potential for providing new methods for forming C-C bonds at mild conditions in organic chemistry.  
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Figure 1. Illustration of proposed mechanism of C-H to C-C bond conversion using metalloporphyrins as 

photocatalyst. “M” is a transition metal and “X” is an arbitrary axial ligand. 
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   Iminyl-radical-triggered C–C bond cleavage of cycloketone oxime derivatives1 provides a 
practical route to access distal cyano-substituted alkyl radicals, which has given chemists a 
new radical reaction platform for the synthesis of diverse alkyl nitriles. Various redox-active 
cycloketone oximes have been explored to generate iminyl radical intermediates through 
polarized homolytic N-O bond cleavage, employing transition-metal reductive catalysis (Fe, Cu 
and Ni) and photocatalysis (reductive or oxidative single-electron-transfer). In this work, a 
unique substrate introducing iminyl radical through homolytic N-N bond cleavage was 
developed. Electron poor iminopyridinium salts undergo the single-electron-transfer(SET) 
reduction to generate pyridine radicals, which lead to the bond homolysis. The visible-light-
induced SET reaction is induced by the formation of a supramolecular electron donor-acceptor 
(EDA) complex2 between carbonate or Hantzsch ester and iminopyridinium substrate. The 
corresponding iminyl radical proceed ring fragmentation to deliver cyanoalkyl radical, which 
subsequently added to electron-deficient alkene. Photophysical and electrochemical studies 
support an electron-transfer mechanism and this strategy can also applied to the late-stage 
functionalization of biorelevant alkenes, highlighting the usefulness of this mild and practical 
photochemistry.  
 

 
Figure 1. Iminyl radical-mediated C-C bond cleavage and addition reaction 
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Recently, functionalization of tricyclo[1.1.1]pentane(TCP) is significantly spotlighted because 
bicycle[1.1.0]pentane(BCP) scaffolds from TCP are able to replace functional groups such as alkyne, 
arene and tert-butyl group in various pharmaceuticals and natural compounds with enhanced 
chemical and pharmacological properties. Therefore, a plenty of researches on BCP 
functionalizations are actively on going,1 however direct C(sp3), C(sp2)-difunctionalization of TCP is 
still in the dark side. Herein, we designed novel iminopyridinium electrophore which can generate 
iminyl radical under visible-light-induced single electron transfer by electron donor-acceptor 
complexation. Cycloalkane iminyl radical undergo ring fragmentation to form cyanoalkyl radical by β-
scission,2 which react with TCP followed by a minisci-type reaction to finally afford the cyanoalkyl and 
pyridyl-functionalized BCP product. The whole reaction process is found to proceed under radical 
chain process and subsequent mechanistic studies are still on going. 
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Figure 1. Difunctionalization of BCP via Visible Light-induced cyanoalkyl radical and 
subsequent Minisci reaction. 
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Biodiesel is an ester of fatty acids obtained from vegetable oil or animal fat. However, the cost of 
biodiesel is 1.5 – 3.0 times higher than that of petroleum-derived diesel fuel. The main reason is the 
large amount of glycerol produced as a co-product.1  
 
Glycerol can form carbon-centered radicals. A challenge during the generation of the radical on 
glycerol is to avoid the elimination of water, given that a more stable α-carbonyl radical will be 
generated. 
 
The purpose of the project is to develop new methods for forging C-C bonds on glycerol by employing 
radical reactions and hereby convert glycerol into a variety of new bio-based molecules with potential 
high-value applications. Via photoredox catalysis it is possible to functionalize glycerol at the C2 
position with electron deficient Michael acceptors.  
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Figure 1. Photocatalytic valorization of glycerol towards Michael acceptors. 
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The addition of cyclopropane rings to drugs is an attractive strategy to increase sp3

 character of a 
potential drug without dramatically increasing molecular weight, which can improve the 
pharmacokinetic/dynamic properties of a drug molecule.1 One interesting way to generate 
cyclopropanes is the Kulinkovich reaction, which forms cyclopropanols from esters and alkyl 
Grignards.2 While alcohols can usually be activated for cross-coupling by transformation into an 
appropriate leaving group (-OMs, -OTs, etc.), cyclopropanols are not compatible with traditional cross-
coupling strategies. When leaving groups typically associated with 2-electron (or polar) reactivity are 
used, only the ring-opened product (3b) is obtained. To access the ring-retained product, it is necessary 
to generate a cyclopropyl radical intermediate via C–O bond scission. The Rousseaux lab has recently 
been active in the development of thiocarbonyl-containing leaving groups which achieve the 
deoxygenative cross-coupling of alcohols via 1-electron (or radical) reactivity.3,4 Thionoester 2 has been 
discovered as a uniquely active leaving group for this chemistry, and an effective method allowing the 
coupling of alkyl cyclopropanols to a variety of aryl zinc coupling partners has been developed. This 
poster will highlight our discoveries in this area, focusing on the synthesis of thionoesters,5 reaction 
optimization for the Ni-catalyzed cross-coupling, and selected scope examples.   
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In recent years, metallaphotoredox scenarios have offered new conceivable pathways to 
challenging transformations under exceptionally mild conditions.1 Driven by this observation, we 
wondered whether we could harness cyclic acetals as vehicles to enable site-selective 
functionalization of strong σ alkyl sp3 C−O bonds. Unlike the elegant advances realized with 
symmetrical acyclic acetals,2 the utilization of cyclic congeners not only would improve the atom 
economy of the overall transformation by preserving the integrity of the organic skeleton but also offer 
the possibility to discriminate between three similar sp3 C−O sites, thus constituting a worthwhile 
endeavor for chemical invention.  

We hypothesized that a light-driven hydrogen atom transfer (HAT) would occur selectively at 
the weak acetal sp3 C−H bond. A subsequent β-fragmentation would take place via an appropriate 
σ*−p orbital overlap prior to C−O cleavage to deliver a carbon-centered radical. The subsequent C−C 
cross-coupling of the carbon-centered radical with the aryl/alkyl bromide would occur in the presence 
of nickel catalysis. The key β-fragmentation would only be accessible if a certain degree of 
conformational flexibility is granted. The protocol is characterized by its excellent chemoselectivity 
profile, broad scope across wide number of cyclic acetals and aryl/alkyl halides, thus offering a novel 
avenue to C-C bond formation.3 

 

 
Scheme 1. Site-Selective sp3 C-O Arylation and Alkylation of Cyclic Acetals 
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α–Functionalized amines and their derivatives are integral fragments of a vast array of 
pharmaceutical agents, agrochemicals and natural products.[1] Therefore, the development of a novel 
and efficient strategy to access these functionalities would be highly relevant for both academic and 
industrial applications. Within the scope of recently developed methodologies, the reductive 
functionalization of tertiary amides provides a synthetically useful access point towards a wide range 
of α–branched amine structures. In particular, the use of Vaska’s complex (IrCl(CO)(PPh3)2), in 
conjunction with a siloxane-based reductant, has come to the forefront as an effective system for 
chemoselective activation of these notoriously robust and ubiquitous building blocks.[2] Traditionally, 
using these mild hydrosilylation conditions, tertiary amides can be converted in situ into reactive 
iminium ion intermediates that can be further intercepted with a variety of nucleophilic entities.[2] It was 
envisioned that through further transformation of the iminium ion into a nucleophilic α-amino radical 
species using a photocatalytic approach, it would be possible to venture into a previously inaccessible 
area of chemical space.[3]  

To address this outstanding synthetic challenge, a streamlined one-pot procedure for mild 
generation of α-amino radicals from tertiary amide building blocks has been developed.[3] The free 
radical species were successfully coupled to the electrophilic dehydroalanine acceptor to produce an 
array of novel, α-functionalised amine derivatives. Furthermore, this strategy was applied towards 
reductive secondary amide functionalisation, as well as intramolecular examples that yielded 
substituted N-heterocycles. In addition to the experimental investigations, Density Functional Theory 
(DFT) analysis was utilised to gain further insight into the reactivity and physical properties of the 
reaction. Finally, to demonstrate the versatility and modularity of the developed dual catalytic, 
reductive functionalization approach, this concept was adapted to access enantioenriched products 
from feedstock starting materials, with the preliminary findings of this investigation disclosed herein. 
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Figure 1. General strategy for umpolung reductive functionalization of tertiary/secondary 
amides.  
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The synergy of transition metal catalysis and photocatalysis offers versatile opportunities for the 
development of new, highly effective synthetic methods under mild reaction conditions. 
 
The heteroaromatic pyrimidopteridine (PPT) catalysts and their corresponding N-oxides (PPTNOs) 
have already been applied in additive-free photo-mediated C−N, C−C, and C−O bond formations.1-3 
Here, we present a strategy for the formation of C−H and C−D bonds in the context of photo-
mediated hydro- and deuterodecarboxylation.4 Under optimized reaction conditions, the conversion of 
commercially available nonsteroidal anti-inflammatory drugs (NSAIDs) in tablet form and on gram-
scale was realized. This decarboxylation method not only deactivates drug residues, e.g., in 
wastewater, but at the same time also generates stoichiometric amounts of CO2. 
 
Although converting CO2 into value-added substrates by using transition metal catalysis or 
photoredox catalysis remains challenging5, our expertise in photoredox catalysis and rational ligand 
design enables the development of robust co-catalytic systems for stoichiometric carbon dioxide 
activation. 
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Figure 1. Photo-mediated deuterodecarboxylation and transition metal-catalyzed CO2 
valorization. 
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Since the first application of the di-nuclear gold complex [Au2(µ-dppm)2]Cl2 for the reductive cleavage 
of alkyl and aryl bromides,1 the complex and its derivatives has been studied intensively.2 In this 
poster we present a fundamentally new synthetic approach utilizing [Au2(µ-dppm)2]Cl2 for the 
preparation of indolines starting from un-activated alkyl bromides (Scheme 1). The methodology gives 
facile access to highly functionalized indoline derivatives from easy-to-access Boc-protected N-
allylanilines. Due to its appearance in various pharmaceuticals and naturally occurring compounds 
the indoline scaffold represents one of the privileged motives in synthetic chemistry. 
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Scheme 1. Selected scope for the light-mediated indoline and tetrahydroquinoline synthesis. 

 
The applicability of the synthetic protocol was further corroborated by the synthesis of a precursor for 
anti-inflammatory agent AN669. The synthetic procedure was carried out in three reaction steps in a 
very good overall yield of 65%, starting from readily accessible 4-(allylamino)phenol.  

Based on the possibility for further functionalization, as well as the mild reaction conditions, we 
anticipate that this method will become a useful tool for the synthesis of building blocks for important 
target molecules. Beyond, we are currently working on an enantioselective variant of the featured 
protocol, which should extend the scope of application even further. 
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Diphosphines are ubiquitous ligands in organic synthesis due to their facile coordination to 
transition-metal salts. Arguably most prominent among the hitherto reported diphosphines is 
the structural motif of the diphosphinoethane (R2P–CH2–CH2–PR2) as a bidentate chelating 
ligand to create stable five-membered metallacycles with transition metals, which promote a 
variety of catalytic transformations. Straight-shaped diphosphine ligands have also been 
extensively studied, because they have shown unique structural and physical properties in 
supramolecular chemistry. In this context, bicyclo[1.1.1]pentane (BCP)-based diphosphine 
ligands would be promising candidates that can be synthesized from [1.1.1]propellane via 
radical difunctionalization. We herein disclose visible-light-promoted diphosphination 
reactions of ethylene and [1.1.1]propellane to produce symmetric and unsymmetric DPPE 
and BCP-diphosphine derivatives (Figure 1). Furthermore, we disclose the physical 
properties and catalytic activity of their transition-metal complexes. 

 

 
Figure 1. Visible-light-promoted diphosphination of small molecules. 
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Photocycloaddition is a powerful strategy to synthesize the high-value synthetic materials 
that are normally difficult to obtain under thermal conditions. We design a new and efficient 
method for producing pyridyl lactams, which are useful for pharmaceutical applications, using 
a photoinduced [3+2] cycloaddition reaction (Figure 1)1. We utilize the unique reactivity of N–
N pyridinium ylides in the presence of a photosensitizer to generate a triplet diradical 
intermediate, which undergoes a stepwise reaction with alkenes. This method is highly 
effective, selective, and tolerant of functional groups, making it a valuable tool for the 
synthesis of complex organic molecules in the pharmaceutical industry.2 In this study, we use 
experimental and computational methods to understand the energy transfer process involved 
in this reaction. 
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Figure 1. EnT induced [3+2] photocycloaddition 
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 α-Alkylation reactions of carbonyl compounds are a fundamental methodology for carbon–carbon 

bond formation to construct basic molecular frameworks. Compared to alkylation reactions with alkyl 
halides in substitution fashion, the alkylation reactions with alkenes in addition fashion are more atom 
economical methodology; however, available alkenes are limited to activated alkenes such as 
Michael acceptors. Here, we developed photoinduced α-alkylation reactions of carbonyl compounds 
with alkenes without electron-withdrawing groups as electrophiles. First, we investigated alkylation 
reactions of malonates with styrene derivatives using a 2,4,5,6-tetrakis(9H-carbazol-9-
yl)isophthalonitrile (4CzIPN) or 2,4,6-Tris(diphenylamino)-3,5-difluorobenzonitrile (3DPA2FBN) 
/KOtBu catalyst system via formation of a catalytic amount of malonate radical by single electron 
oxidation of the corresponding malonate anion, and it was found that the desired alkylation reactions 
proceeded smoothly under blue light irradiation.[1] On the other hand, photoinduced α-alkylation 
reactions of ketones and esters, which are less acidic carbonyl compounds, were realized by using 
their corresponding silicon enolates as precursors for α-carbonyl radicals.[2] The silicon enolates were 
oxidized by organo-
photocatalysts into radical 
cation species, which reacted 
with protic additives to form 
α-carbonyl radicals, and the 
desired reactions proceeded 
smoothly. The use of 
appropriate protic additives 
and hydrogen atom transfer 
(HAT) catalysts was a key to 
achieve high yields. Those 
reactions are one of desired 
α-alkylation reactions of 
carbonyl compounds. In this 
presentation, we will report 
our recent research results 
on the alkylation reactions 
via α-carbonyl radical 
formation. 
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Recently, visible-light-driven generation of C(sp3)-centered radicals under mild conditions has 
emerged as a powerful tool for chemical reactions. The process proceeds through a single electron 
transfer (SET) event between the excited-state photoredox catalyst and radical precursors which 
have been widely explored. This photochemical reaction exploits the nature of C(sp3)-centered 
radicals, thus allowing for the introduction of sterically hindered C(sp3) fragments such as tertiary or 
secondary alkyl groups to organic molecules. Despite remarkable progress achieved in this area, the 
oxidation/ reduction steps of the photoredox catalyst often complicate the reaction and require the use 
of expensive transition metal catalysts such as Ir or Ru photoredox catalysts. In this context, the direct 
excitation of a radical precursor, which enables circumventing the redox cycle of the photocatalyst, 
has emerged as an alternative approach for the generation of a C(sp3)-centered radical. For example, 
the formation of charge-transfer complexes based on electrostatic interactions between substrates 
allows for SET and the generation of the corresponding radical species, but this approach is limited in 
the available substrates because the formation of the complex is essential. Also, more straightforward 
method for generating radical species by direct photoexcitation of the 4-alkyl-1,4-dihydropyridines 
(alkyl-DHPs) has been reported. The excited state of them acts simultaneously as a strong SET 
reductant and as an alkyl radical source. However, the generation of a sterically hindered tertiary alkyl 
radical by direct visible-light excitation remains underdeveloped. 

In this presentation, we describe that the direct visible-light excitation of 8,9-dioxa-8a-
borabenzo[fg]tetracene (boracene)-derived organoboron-ate complex generates alkyl radicals 
without the need for an external photoredox catalyst (Figure 1).1 The photoexcitation of the borates is 
applicable to decyanoalkylation, Giese addition, and nickel-catalyzed carbon−carbon bond formations 
such as alkyl−aryl cross-coupling or three-component vicinal alkylarylation of alkenes, thus enabling 
the introduction of various C(sp3) fragments to organic molecules. Boracene was reacted with 
organolithium or Grignard reagents to produce organoboron complexes that can be handled in air or 
water. The direct excitation of the borates by visible light enables the generation of methyl, primary, 
secondary, and tertiary alkyl radicals. Various spectroscopic and electrochemical measurements 
suggest that the borates derived from boracene exhibit very strong reduction ability upon direct 
excitation. Therefore, the organoboron-ate complexes could be applied to various catalytic reactions 
because they function as strong single electron reductants and organic radical precursors upon 
visible light irradiation. Boracene could be recovered and reused after the catalytic reaction. 
 

 
 

Figure 1. Alkyl radical from direct excitation of boron-based precursors. 
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Silicon-centered radicals provide a potent tool for enabling regio- and chemoselective silylation, 
different from the two-electron reaction due to the reactivity of the open-shell species. Silyl radical 
species have been extensively studied in structural complex chemistry for decades, and their 
characteristic reactivities have led to many synthetic applications. In this context, this species serves 
an important role in broad areas including materials science, polymer chemistry, and industry. While 
synthetic chemists have developed diverse generation methods for silyl radicals and their synthetic 
applications, recently, photoredox chemistry has emerged to achieve silyl radical generation under 
mild conditions. Photoredox-catalyzed hydrogen atom transfer (HAT) of Si−H serves as a versatile 
alternative for silyl radical generation, which classically required strong oxidants such as tert-butyl 
hydroperoxide. While the light-driven HAT-based silyl radical generation has quickly grown in organic 
synthesis, this system often complicates the reaction pathway due to the requirement of an external 
HAT reagent and the harmonization of the HAT process with photoredox catalysis.  

Because silylboronic acid pinacol esters (R3SiBpin) have become common reagents, the use of 
silylboronates in organic synthesis has increased exponentially. Considering that the recent 
advancements in silylboronate synthesis have made a variety of silylboronates easily accessible, 
versatile silyl radical precursors are now possible. However, despite the enormous amount of work 
done on silylboronate as a silyl anion equivalent, its use as a silyl radical is still immature. In a 
pioneering study, Ito et al. showed that a silylaminoboronate induces homolysis under UV irradiation, 
resulting in the formation of silyl and boryl radicals. We envisioned that using silylboronate for the 
generation of a silyl radical would eliminate the HAT process and enable the use of organic 
photoredox catalysts with a weak reduction potential because the photoinduced single electron-
transfer (SET) oxidation of a silylboronate readily occurs in the borate form by activation with an 
appropriate nucleophile (Figure 1). By lowering the oxidation potential, a number of photoredox 
catalysts can be used, leading to the expansion of applicable transformations and substrate scopes.  

In this presentation, we describe a general and efficient method for silyl radical generation from 
silylboronates using a versatile photoredox catalyst and applied it to N-heterocyclic carbene (NHC)-
catalyzed radical relay-type three-component coupling. 

 
Figure 1. Silyl radical generation from silylboronate. 
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Conventional cross-coupling chemistry utilizes organohalides as electrophilic coupling partners. While 
reliable, the low natural occurrence of organohalides alongside issues regarding their metabolic and 
environmental stability has prompted chemists to ask: what is the alternative? Alcohols have emerged 
as an attractive option due to their natural abundance, synthetic ubiquity, economic availability and 
generation of water as the only by-product via deoxygenative processes.1 While strides have been 
made in the establishment of methods that utilize alcohols in these transformations,2 strategies that 
feature non-activated alcohols in cross-coupling chemistry remain scarce. 
 
Through hypothesis-driven high-throughput experimentation, our group has disclosed a method that 
utilizes dual nickel and bismuth catalysis to engage unprotected, non-activated alcohols in arylation 
reactions.3 Recent progress has shown that this method can be generalized, enabling access to 
valuable C(sp3)-C(sp2), C(sp3)-C(sp) and C(sp3)-N bonds through Suzuki, Sonagashira and N-
alkylation pathways, respectively. Mechanistic experiments suggest these reactions proceed by a 
unified Lewis acid-catalyzed C(sp3)-O bond breaking step to generate a carbocation that is 
sequestered by a nickel catalyst. A range of kinetic techniques (including visual time normalization, 
Eyring, Hammett and isotope analyses) have been utilized to generate a mechanistic landscape for 
this transformation. 
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Figure 1. Employing alkyl-hybridized, unprotected alcohols as electrophiles in cross-coupling 

reactions 
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Pd-catalyzed distal C‒H activation using covalently attached directed groups (DG) is well 
explored. However its limitation lies in the pre-installation and post-functionalization 
detachment of the DG. Additionally, the stoichiometric amount of transient DG employed in 
distal C‒H activation, further hinders the efficacy. In an attempt to overcome these challenges, 
we have utilized the catalytic use of directing ligands to promote such distal meta-C‒H 
activation. Non-covalent interactions are a ubiquitous process that promotes the spontaneity 
of various natural and biological transformations, thus playing a prominent role in controlling 
the regioselectivity and site selectivity of various organic transformations. However, the primary 
requirement of employing such non-covalent interactions is the presence of milder reaction 
conditions. Consequently, its involvement in transition-metal catalysis has, to date, remained 
in the infant stage. Non-covalent interactions among a target, a suitably designed directing 
ligand and palladium can establish an optimum arrangement that allows selective distal C‒H 
activation of arenes. The catalytic use of directing ligands, through H-bonding interaction with 
the substrate helps us to achieve site-selective Pd-catalyzed distal C‒H activation. The current 
protocol illustrates a series of directing ligands that enables selective meta-alkenylation of 
aromatic amines with varying chain lengths, signifying the generality of the work developed. 
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Figure 1: This Work- Non-covalent interactions to promote Pd-catalyzed distal meta C-H activation 
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The aerobic oxidation of alcohols may proceed with many catalysts, among which are the  
catalysts of palladium. To that end, using heterogeneous catalysts has drawn much attention 
in the last decade, whereas supports that originate from a biological and renewable source  
that is also nontoxic and biodegradable were found to be superior.  
In the present research, we were immobilizing palladium complexes with the TPPTS ligand  
(3.3’,3”-Phosphanetriyltris (benzenesulfonic acid) trisodium salt), in the xerogels and 
hydrogels of various polysaccharide. The new heterogeneous catalysts were successfully 
used in the  
aerobic oxidation of benzylic alcohols, yielding similar or even increase in activity with each  
subsequent reuse.1 Furthermore, both, the heterogenozation procedure and the type of the  
polysaccharide, effected the reaction performance.  
The new heterogeneous catalysts were characterized by FTIR, SEM-EDS, XPS, DLS, TEM  
and zeta potential analyses, raveling the formation of new bond between the polysaccharide 
and TPPTS and dispersion of the palladium in the support, whereas in alcohols the  
palladium was reduced and nanoparticles were formed during the reaction. 
At last, for the xerogel-based catalyst, it was found that mixing the catalyst in ethanol for up 
to 24 hours before executing the reaction led to an increase in conversions, though, over a  
longer duration of mixing, conversions were decreased (Figure 1).2 Both the HR-TEM and 
theDLS analyses of the various catalysts showed that, indeed, the longer the mixing time in  
ethanol up to 24 hours, the greater the number of nanoparticles produced; however, longer 
mixing periods (beyond 24 hours) produced aggregates, that might explain the maximal  
conversion at 24 hours in ethanol. 

 
Figure 1. Effect of catalyst impregnation time on catalytic activity. 
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The need to develop new molecular architectures still poses a major challenge for chemists. 
The development of chemo, regio and stereoselective reactions operating under simple and 
environmentally friendly conditions is crucial for the synthesis of complex molecules. Our group 
recently reported an addition reaction of boronic acids on allylic fluorides type A catalyzed by 
a complex of Rh(III) and Ir(III)1, 2 and showed that the role of the C-F bond is very important in 
the progress of the reaction. In this project, we aimed to understand what the reactivity of this 
particular C-F bond would be in the homologous alpha-fluoro cyclopropyl system of the type 
B. The role of the amide function in this scaffold is determinant as it participates in the activation 
of the C-F3, 4 bond thus inducing a regioselective opening of the cyclopropane ring5 on the 
proximal or distal bond. The diversity of ring opening products provide access to several 
molecular motifs. 
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We report in this work the direct cyclopropanation of racemic and chiral allylic fluorides. We 
will show the role of the fluorine atom on the reactivity of the double bond and its control on 
the stereoselectivity from racemic and chiral products. Then we will discuss the opening of 
these cyclopropanes using Lewis acids via the activation of the C-F bond. 
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Reactions involving the incorporation of a nitrile group into organic molecules are valuable, as the 
moiety serves as a building block for further derivatization and finds usage in numerous 
pharmaceuticals and agrochemicals. However, common reactions for the synthesis of aryl nitriles, 
such as the Sandmeyer or Rosenmund-von Braun reactions, either employ potentially hazardous 
starting materials, like aryldiazonium salts, or forcing conditions for the reaction to occur. Recently, 
numerous groups have developed methods for decarbonylative cyanation, which employ readily 
available carboxylic acid derivatives as electrophiles. Isotopically-labelled cyanation via a 
decarbonylative route would allow for the interchange of 12C for 13C or 11C, which can be used for 
mechanistic investigations or in positron emission tomography (PET) scans. Yet, methods for 
integration of isotopically-labelled nitriles via decarbonylation lack, due to long reaction times, catalyst 
poisoning, and use of incompatible cyanide sources.1 This works explores 13CN and 11CN 
incorporation by addressing the aforementioned issues.  
 
 

 

 
 

Figure 1. General scheme for decarbonylative isotopically-labeled cyanation. 
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1-Arylcyclopropylamines are useful bioisosteres for benzylamines and are an increasingly common 
motif in biologically active molecules.[1] Traditional strategies to access 1-arylcyclopropylamines 
typically require either stoichiometric organometallic[2] or azide reagents,[3] which are air and moisture 
sensitive and/or require specific safety precautions (Fig. 1a). The use of highly reactive reagents 
generally precludes application of these methods to the synthesis of complex pharmaceuticals, which 
often bear sensitive functional groups. The lack of a building block approach to access 1-
arylcyclopropylamines, using bench stable and commercially available starting materials, limits the 
ability of medicinal chemists to easily explore this compound class. 
We now report that 1-arylcyclopropylamines can be accessed via a modular cross-coupling approach 
between aryl halides and the redox-active esters of commercially available 1-
aminocyclopropanecarboxylic acids. The methodology proceeds under mild conditions and the 
starting materials are bench stable compounds which can be prepared in a single step with minimal 
purification. The mild conditions of this strategy are exemplified by the presence of sensitive 
functional groups in the substrates, such as enolizable carbonyls, free alcohols, and base-sensitive 
stereocenters. Both (hetero)aryl iodides and bromides may be employed in this chemistry, and the 
reaction is also compatible with other α-amino strained rings. This presentation will detail reaction 
optimization, scope, substrate synthesis, and mechanistic hypotheses. 
  

 
 

Figure 1. Synthesis of 1-arylcyclopropylamines using traditional methods vs. this method. 
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Although less prevalent than 1,2-amino alcohols, 1,3-amino alcohols are ubiquitous structural motifs 
found in natural products and biologically active molecules.1,2 Their use as chiral ligands, phase 
transfer catalysts, resolving agents or platforms for synthesis of pharmaceuticals is also 
documented.1,3 Access to these important chiral building blocks by means of catalytic enantioselective 
methods is an area of growing interest.4-6 
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Figure 1. Regio- and enantioselective protoboration of allylic amine. 
 
 
Herein, we disclose our efforts toward the development of a Cu-catalyzed enantioselective 
protoboration of 1,1-disubstituted allylic amines to access 1,3-amino alcohols (Figure 1). 
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Since the seminal research of Heck et al.1 the palladium-catalyzed aminocarbonylation of 
(hetero)aryl- and alkenyl halides has been demonstrated to be an effective synthetic 
approach for the selective synthesis of carboxamides with various structures.2 The amide 
moiety, synthesized in these reactions, represents a ubiquitous functional group in a wide 
range of biologically important compounds,3 and can be found in pharmaceutically relevant 
heteroaryl skeletons.4  
In this work, the palladium-catalyzed aminocarbonylation of 3-iodochromone, as an oxygen 
containing model substrate, was investigated using various amines (Figure 1). Detailed 
optimization study was performed in the presence of a secondary amine: N,O-
dimethylhydroxylamine, chosen as N-nucleophile model, showed that under optimized 
circumstances the chromone-3-carboxamide was, selectively, formed via classical 
aminocarbonylation process. Howbeit, the use of primary amine such as O-
methylhydroxylamine, led exclusively to the chromane-2,4-dione counterpart, instead of the 
expected carboxamide, through a different and unprecedented synthetic pathway. The scope 
of the reaction employing various primary and secondary amines, under the same 
experimental conditions, revealed the applicability of these experimental protocols, able to 
access a large library of structurally enriched chromone-3-carboxamides (8 derivatives) and 
functionalized chromane-2,4-diones (18 derivatives). All compounds were synthesized, 
isolated, and fully characterized by means of NMR and HRMS analyses. The structures of 
two different products have been established by single-crystal XRD study. A plausible 
mechanism was also proposed to explain the influence of the amine on the course of the 
reaction and on the chemoselectivity of the carbonylation processes. 
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Figure 1. Palladium-catalyzed aminocarbonylation of 3-iodochromone 
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Redox transpositions, i.e the transposition of the oxidation levels of carbon atoms, represent a po
werful yet underexplored paradigm for editing a molecule’s reactivity profile, circumventing challen
ging functional group manipulations and expediting multi-step synthetic sequences.1 This work inv
estigates such a strategy in the direct 1,2-transposition of functionality in tertiary amides, enabling 
the synthesis of aminoketones, aminoalcohols, enaminones and diverse functionalized N-heteroc
ycles. 
Employing an iridium-catalyzed reduction,2 transiently-formed silylated hemiaminals were convert
ed cleanly to the corresponding enamines, which reacted efficiently with numerous electrophiles. 
Most notably, when treated with the oxidant mCPBA, the enamine converted to the desired amino
ketone, constituting a formal carbonyl transposition.  
The scope of this transformation, and related reactions with alternative electrophiles, has been ex
plored to enable the synthesis of β-functionalized amines. The carbonyl transposition was scaled t
o 5 mmol and the product aminoketones were shown to be valuable synthetic intermediates.  
It is hoped that this work will stimulate further development of such redox-editing approaches. 
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Herein we report a modular peptide ligation methodology that couples dioxazolones, arylboronic 
acids, and acrylamides to construct amide bonds in a diastereoselective manner under mild 
conditions, facilitated by Rh(III) catalysis.1 By converting the C-terminus of one peptide into a 
dioxazolone and the N-terminus of a second peptide into an acrylamide, the two pieces can be 
bridged by an arylboronic acid to construct unnatural phenylalanine, tyrosine, and tryptophan residues 
at the junction point with diastereoselectivity for their corresponding D-stereocenters. The reaction 
exhibits excellent functional group tolerance with a large substrate scope and is compatible with a 
wide array of protected amino acid residues that are utilized in Fmoc solid phase peptide synthesis. 
The methodology is applied to the synthesis of six diastereomeric proteasome inhibitor analogs, as 
well as the ligation of two 10-mer oligopeptides to construct a 21-mer polypeptide with an unnatural 
phenylalanine residue at the center. 
 

 
 

 
 
 
 
 

 
 

Figure 1. Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed  
Diastereoselective Three-Component Carboamidation Reaction. 
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Chiral molecules play significant roles in areas ranging from life, biology, medicine to materials 
science. Compared to the extensive studies of chiral compounds with carbon-stereogenic centers, 
synthesis and application of silicon-stereogenic silanes have been much less explored. Due to the 
inherent properties of the silicon atom, construction of enantioenriched chiral organosilanes bearing a 
stereocenter at silicon has always been challenging.1 

 
During the last five years, our group has developed a series of catalytic asymmetric dehydrogenative 
coupling reactions for the synthesis of silicon-stereogenic silanes (Si-CADC) with high efficiency 
(Figure 1).2 Key to the success is the use of Rh(I) catalysts equipped with bulky and rigid chiral 
diphosphine ligands for the discrimination of the enantiotopic Si-H bonds of dihydrosilanes. This 
general Si-CADC strategy unlocks a facile platform toward diverse Si-stereogenic silanes, that could 
find various applications in many areas. 
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Figure 1. Si-CADC strategy 
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In past decades, the synthesis and modification of amino acid derivatives emerged as important 
research areas in organic and medicinal chemistry. In particular, functionalized natural and unnatural 
amino acids proved valuable in drug development, as they often exhibit enhanced bioactivity and 
pharmacokinetic properties. In this context, azlactones (masked amino acids) have been widely 
utilized for the synthesis of natural and unnatural amino acid derivatives.1 
In this study, we examine the site-selctive iridium(III)-catalyzed C–H amidation between 2-aryl 

azlactones and acyl azides.2 This transformation produces a range of ortho-amidated azlactones, 
which act as precursors for the synthesis of chiral amino acids via organocatalyzed ring-opening 
reactions. To test its effectiveness we conduct the azlactone-assisted Ir(III)-catalyzed C–H amidation 
using acyl azides. Furthermore, we isolate an iridacycle species that supports a proposed reaction 
pathway. In addition, we highlight the application of this method to the late-stage C–H amidation of 
complex drug molecules. Importantly, the synthesized adducts are readily converted into chiral amino 
acids via urea-catalyzed ring-opening reactions3 (Figure 1). 
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Figure 1. C–H amidation and transformation using azlactones 
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A new palladium-catalyzed hydroaminocarbonylation protocol of olefins, using aliphatic amines under 
carbon-monoxide atmosphere is disclosed. Previously reported protocols have revealed, that the 
strong basicity of the nucleophiles requires the addition of acid in order to facilitate the reaction. This 
work represents an additive-free approach of the synthesis of hydroaminocarbonylated compounds in 
moderate to good isolated yields. Styrene, oct-1-ene and isoprene were transformed under optimized 
reaction conditions in the presence of various aliphatic amines to obtain the corresponding amide 
isomers. The effect of chiral diphosphine ligands on product distribution, and enantiomeric excess, 
was investigated and a mechanism for the additive-free hydroaminocarbonylation reaction was 
proposed. 
 

 
 

Figure 1. Palladium-catalysed hydroaminocarbonylation of olefins 
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The hydantoin moiety is an important structural motif present in various pharmaceuticals like the 
anticonvulsant phenytoin. The arylation of protected hydantoins was achieved by the group of 
Clayden with aryl iodides applying Xantphos as ligand.1 However, an arylation with cheap and broadly 
abundant aryl chlorides was not achieved. In previous work, palladium catalysts bearing highly 
electron-rich, bulky Ylide-functionalized phosphine (YPhos) ligands were found to efficiently promote 
arylations with aryl chlorides at low temperatures.2–5 In this work6, YPhos ligands enabled the 
arylation of N-protected hydantoins in good to excellent yields (Figure 1). By adjustment of the YPhos 
ligand, a selective monoarylation of a 5-unsubstituted hydantoin was achieved. This has opened up 
an expedient access to a wide variety of hydantoins, including derivatives of the anticonvulsant drugs 
phenytoin and mephenytoin, sequential diarylations and arylation-alkylation sequences in 
combination with stepwise deprotection strategies.  
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Figure 1. Pd-catalyzed Arylation of hydantoins with aryl chlorides. 
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Catalytic, direct transformations of C–C bonds to new C–C bonds afford unique tools for organic 
synthesis, and various research groups have developed a variety of C–C bond formation methods. 
Among these methods, catalytic reactions involving cleavage of unstrained C–C bonds have been 
recognized as highly challenging transformations. 
We have developed catalytic, chelation-assisted alkenylation of allylbenzene and styrene derivatives 
via unstrained C–C bond cleavage using rhodium catalysts. This presentation reports three types of 
C–C bond transformations. 
When the reaction of prenylbenzene derivatives bearing a pyridyl or 2-pyridyl group with styrenes was 
carried out in the presence of a catalytic amount of [Cp*Rh(CH3CN)3][SbF6]2 under EtOH refluxing 
conditions, the corresponding ortho alkenylation products were obtained in high yields via C(sp2)–
C(sp3) bond cleavage (eq 1).1  
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This C–C bond transformation can also be applied to the reaction of styrene derivatives having the 
directing group with styrenes. When isopropenylbenzene derivatives having a directing group were 
reacted with styrenes in the presence of the dicationic rhodium catalyst under EtOH refluxing 
conditions, conversion of the isopropenyl group to β-styryl groups proceeded to afford the 
alkenylation products in good to high yields (eq 2).2 
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The use of allyl alcohols as a coupling partner of this C–C bond transformation provided the 
deallylative β-acylalkylation products (eq 3).3 
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Au-catalyzed reactions are a powerful tool to synthesize functionalized molecules, which are 
inaccessible by other conventional methods, under mild conditions with high functional group 
compatibility.  In particular, Au catalysis efficiently promotes atom efficient transformations, such as 
addition and rearrangement reactions, via cleavage of various kinds of σ bonds, such as not only C-H 
and heteroatom-hydrogen bonds but also C-C, C-heteroatom, and heteroatom-heteroatom bonds, to 
produce multi-substituted molecules in an atom-efficient manner.  We recently developed Au-
catalyzed reactions via N-S bond cleavage to efficiently synthesize organic molecules containing both 
nitrogen and sulfur atoms.  For example, Au-catalyzed reactions of alkynyl N-sulfinylimines 1 were 
utilized to produce the corresponding 2H-azirines 2 that possess sulfenyl and acyl groups at the 3 
position of the azirine ring, in good to excellent yields via cleavage of O-S and N-S bonds (Figure 
1a).1  In addition, Au-catalyzed reactions between terminal alkynes 3 and sulfenamides 4 proceeded 
via cis-insertion of alkynes into the N–S bond in sulfenamides, affording the corresponding β-
sulfenylenamines 5 in yields up to 90% (Figure 1b).2 
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Figure 1. Au-Catalyzed Reactions via N-S Bond Cleavage 
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Herein, we report the development of an iron-catalyzed olefin oxyamidation by utilizing tethered 
dioxazolones as the nitrenoid precursor to produce valuable β-lactam scaffolds. Mechanistic studies 
revealed that a relatively strong π-accepting ability of the phthalocyanine ligand is critical in 
generating the key triplet iron-imidyl radical intermediate to enable the 4-exo-trig-lactamization with 
the incorporation of oxygen nucleophiles in high diastereoselectivity. This cyclization approach was 
readily extended to the highly efficient γ-lactam synthesis (TON > 300). 
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Figure 1. Phthalocyanine-Fe catalyzed oxyamidation toward β- and γ-lactams 
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Alcohols are cheap and environmentally benign substrates, which can be obtained from biomass. 
This makes them a sustainable source of carbon compared to fossil resources for the production of 
bulk and fine chemicals. The development of new methods for carbon-carbon bond formation from 
alcohols is therefore of great interest.1Olefinations are among the fundamentally important reactions 
in organic chemistry, which makes the formation of alkenes from alcohols an interesting target when 
investigating new synthetic methods with alcohols.Stilbenes are an important class of compounds as 
their scaffold is present in biologically active compounds as well as in materials due to their optical 
properties. Today, stilbenes are synthesized through various reactions, including most prominently 
the Wittig, Horner-Wadsworth-Emmons, and palladium catalyzed reactions.2The developed transition-
metal-free method for the synthesis of (E)-stilbenes from benzyl alcohols and phenyl acetonitriles is a 
new route for the formation of (E)-stilbenes and employs only potassium tert-butoxide as a base in 
addition to 18-crown-6 (Figure 1). Furthermore, a two-step-one-pot coupling has been developed 
enabling the use of benzyl halides instead of phenyl acetonitriles as starting materials. 
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Figure 1. Reaction schemes for the coupling reaction of benzyl alcohols and phenyl 

acetonitriles forming (E)-Stilbenes and the two-step-one-pot reaction enabling the use of 
benzyl chlorides as starting materials. 
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The 3d-metal catalyst Mn(CO)5Br was found to efficiently promote ortho C–H allylations[1] of 
arenecarboxylates in the presence of neocuproine as the ligand. Despite the simplicity of directing 
group and catalyst system, the selectivity goes well beyond the state of the art[2] in that mono-allylated 
products are obtained exclusively with high selectivities for the least hindered ortho-position. The 
directing group can optionally be removed by in situ[3] decarboxylation, opening up a regioselective 
entry to allyl arenes. The preparative utility of the process and its othogonality to other approaches 
was demonstrated by 44 products with otherwise hard-to-access substitution patterns, including 3-
bromo-allylbenzene, 3-allylbenzofuran, or 5-allyl-2-methylnitrobenzene.[4] 

 

 
 

Figure 1. Mn-catalyzed allylation of benzoates with optional decarboxylation. 
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Palladium-catalyzed couplings of silicon enolates with aryl electrophiles are of great synthetic utility, 
but often limited to expensive bromide substrates. A comparative experimental study confirmed that 
none of the established ligand systems allows to couple inexpensive aryl chlorides with α-
trimethylsilyl alkylnitriles. [1] In contrast, ylide-functionalized phosphines (YPhos) led to encouraging 
yields.[2] A statistical model was developed that correlates the reaction yields with ligand features. It 
was employed to predict catalyst structures with superior performance. With this cheminformatics 
approach, YPhos ligands were tailored specifically to the demands of Hiyama couplings. The newly 
synthesized ligands displayed record-setting activities, enabling even the eluive coupling of aryl 
chlorides with α-trimethylsilyl alkyl nitriles. The preparative utility of the catalyst system was 
demonstrated by the synthesis of pharmaceutically meaningful α-aryl alkylnitriles, α-arylcarbonyls and 
biaryls.[3] 
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Figure 1. Computer-Driven Development of Ylide functionalized Phosphines for Palladium-
Catalyzed Hiyama Couplings. 
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Owing to the prevalence of α-chiral olefins in biologically active compounds, access to this motif has 
attracted continuous attention.1 In recent years, significant efforts have been placed on the 
development of direct methods to forge tertiary benzylic/allylic stereocenters via Csp2–Csp3 bond-
forming strategies.2 Among other examples, this includes several Ni-catalyzed enantioselective 
reductive cross-coupling reactions,3 photo-induced Ni-catalyzed Csp3–H benzylic alkenylations,4 and 
an enantioselective dual [Cu/Pd]-catalyzed hydroalkenylation of olefins.5  
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Figure 1.Nickel-catalyzed enantioselective cross-coupling between  
β-bromostyrenes and secondary Grignard reagents 

 
While the Ni-catalyzed cross-coupling between vinyl bromide and rapidly epimerizing benzylic 
Grignard reagents is well-documented,2,6 the corresponding reaction using β-bromostyrenes has not 
reached the same level of achievement.3,6 We report herein our efforts in this direction with the 
identification of a general and highly enantioselective nickel catalyst supported by a chiral (P,N) 
ligand. Rarely explored secondary benzylic Grignard reagents were evaluated as electrophiles and 
showed excellent reactivity and enantioselectivity in most cases. The protocol is operationally simple, 
and applicable to a broad range of substrates.  
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In order to reduce anthropogenic CO2 emissions, which are considered the main cause of 
global warming, it is effective to convert CO2 emitted from thermal power plants into mass-produced 
basic chemicals. However, the energy and cost required to purify, concentrate, and compress the 
low-concentration and low-purity CO2 contained in the exhaust gas from thermal power plants is 
significant. Therefore, it should be worthwhile to directly utilize the CO2 in the exhaust gas from 
thermal power plants without going through such pretreatment processes. 

In this study, we report the direct conversion of low-concentration of CO2 (15 vol %), 
equivalent to CO2 concentrations in the exhaust gas of thermal power plants, to carbamic acid esters 
(CAEs), which are precursors of pharmaceuticals, agrochemicals, and isocyanates (Figure 1).1 The 
reaction was carried out using Si(OMe)4 as a regenerable reagent and 1,8-diazabicyclo[5.4.0]undec-
7-ene as a CO2 capture agent and catalyst. As a result, various N-aryl and N-alkyl CAEs were 
obtained in moderate to high yields (45-77% in six cases and 84-89% in seven cases). In addition, bis 
CAEs (precursors of polyurethane raw materials) were successfully synthesized from simulated 
exhaust gas containing impurities such as SO2, NO2, and CO, or on a gram scale. We believe that 
this method avoids the use of harmful phosgene derived from fossil resources as a raw material for 
isocyanate production and reduces CO2 emission. 

This work was supported by the Uncharted Territory Challenge 2050 (Mitou Challenge 2050) 
(K.T.) from the New Energy and Industrial Technology Development Organization (NEDO). 

 

Suitable for variety of N-aryl, N-alkyl, and bis carbamic acid esters (CAEs)    (84–89% yields for 7 examples, 45–77% yields for 6 examples)
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Figure 1. Overview of this work. 
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Cross-coupling reactions are an extremely important tool for making carbon–carbon bonds of 
organic compounds. In particular, the Suzuki–Miyaura cross-coupling reaction (SMC) with 
organoboron reagents is the most frequently used, because of its practicality and versatility. Lewis 
acidic organoboronic acids and esters are generally employed for the SMC, however some of these 
organoboron compounds are hard to participate in the reaction, because they suffer protodeborylation 
under the basic and/or aqueous reaction conditions. Since the instability mainly arises from the boron-
Lewis acidity, installation of a 1,8-diaminonaphthalene (dan) substituent on the boron center that 
diminishes the Lewis acidity has been demonstrated to significantly improve the stability.1 

On the other hand, Lewis acidity-diminished dan-substituted organoboron compounds become 
reluctant toward the SMC, because it is difficult to activate the B(dan) center with a base. Hence 
conversion of the B(dan) moiety into B(OH)2 via acidic deprotection is performed before its use for the 
SMC; the process is totally unsuitable for pentafluoro–
B(dan) and 2-pyridyl–B(dan) being unstable in their 
boronic acid-forms. Under these circumstances, we 
have recently reported on the direct SMC of Ar–B(dan) 
that does not need acidic deprotection by use of a 
strong base (KOtBu) as an activator, albeit at the cost 
of functional group tolerance (Scheme 1A).2 Herein, we 
disclose that the direct SMC smoothly takes place even 
under weak base conditions by using a 
palladium/copper cocatalyst (Scheme 1B). 

As depicted in Scheme 1B, the cross-coupling of 
pentafluorophenyl–B(dan) with p-bromotoluene 
afforded 1a in 88% isolated yield. The weak base 
conditions allowed an electron-rich aryl bromide having 
a relatively reactive NH2 group to be included in the 
direct SMC to give an 80% yield of 1b, and 
furthermore, the reaction was also applicable to 2-
pyridyl–, 5-pyrazolyl– and 5-thiazolyl–B(dan), being 
unstable in their boronic acid-forms, resulting in the 
efficient formation of the respective coupled products 
(1c–1f). It should be noted that base-sensitive ester 
and ketone functionalities remained intact. 
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Alkene rotation around the metal–alkene bond in complexes is one of the most fundamental 
elementary processes in organometallic chemistry, and the energy barrier of alkene rotation has been 
studied experimentally1 and theoretically2 for various alkene complexes. There have been numerous 
organometallic catalytic reactions involving the alkene rotation step, especially right before migratory 
insertion. However, it has rarely been recognized as key steps such as turnover-limiting or selectivity-
determining steps in catalytic cycles. Chain walking is a process where alkylmetal species move 
along aliphatic carbon chains through repetitive β-hydride elimination, alkene rotation, and migratory 
insertion. During the course of our theoretical and experimental studies on the catalytic reactions 
proceeding via nondissociative chain walking of 1,10-phenanthroline palladium catalysts, we obtained 
some results indicating that the alkene rotation step mostly has the highest energy barrier in the chain 
walking process. 
Explorations of nondissociative chain walking pathways of an n-propylpalladium species by DFT 
calculation suggested that the transition states on the alkene isomerization pathways only located 
during the alkene rotation. Alkene dissociation from the alkene hydrido complex and associative 
alkene exchange were also calculated and found to be less favorable than the nondissociative chain 
walking pathway. Theoretical calculation of palladium complexes with longer alkyl groups also 
provided similar results to the propylpalladium complex. In addition, it was suggested that chain 
walking of the palladium center between internal carbons proceeds via palladium hydride complexes 
ligated to cis alkenes, although cis alkene complex is thermodynamically less stable than trans alkene 
complex (Figure 1). The preference of cis alkene intermediates was supported by a deuterium-
labeling experiment of remote arylative substitution using a 1,10-phenanthroline palladium catalyst.3 

 

 

Figure 1. Energy barriers of chain walking pathways between 2- and 3-positions of 4 carbon 
alkyl chain. 
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1-Azaspirocycles have been widely utilized not only in bioactive molecules, but also in chiral 
organocatalysts and ligands. Dearomative spirocyclization is one of the powerful methods to 
approach such skeleton because this reaction allows to build such a molecular complexity from 
simple and abundant arenes. Nevertheless, the majority of these methods have been limited to the 
conversion of phenol derivatives.[1] 

In this regard, we have developed a Pd-catalyzed dearomative azaspirocyclization of bromoarenes 
bearing an amino alkyl chain with N-tosylhydrazones.[2] The key design for this reaction is the 
generation of benzyl-palladium intermediate, which then undergoes an unusual intramolecular C–N 
bond formation to give an alkylideneazaspirocycle. Under the influence of Pd/DPEphos as well as 
Pd/PPh3, a variety of bromoarenes including furans, thiophenes, and naphthalenes were transformed 
into the corresponding azaspirocycles in a convergent manner. The spirocycles from furans were 
further converted to azaspirocyclopentenone by an acid-catalyzed skeletal rearrangement. Utilizing 
the present methodology, the first total synthesis of fortuneicyclidins, which are the Cephalotaxus 
alkaloids with a uniquely complex polycyclic skeleton,[3] has been accomplished in eight steps from 
commercially available compounds. 
 

 
Figure 1. Pd-Catalyzed Dearomative Azaspirocyclization of Bromoarenes with N-

Tosylhydrazones and Concise Synthesis of Cephalotaxus Alkaloids. 
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Insertion of alkene, a versatile building block in organic synthesis, to metal–carbon bond was 
extensively investigated. In particular, organometallic catalytic reactions manipulating hydrido-
complexes generated from C–H activation is a hot topic of research. Whilst hydrofunctionalization of 
terminal alkenes was widely reported, coupling of internal unactivated alkenes is still challenging. In 
2012, Kochi and Kakiuchi first demonstrated the use of consecutive isomerization, which is known as 
“chain-walking”, in organic synthesis.1 This provides a powerful tool to move double bonds along a 
hydrocarbon chain for the introduction of functional groups to remote positions. We hypothesized that 
the combination of C–H activation and chain-walking will open new possibilities to organic 
transformation. As of 2020, there were only two reports on the combination of C–H activation and 
chain-walking as means in organic synthesis.2,3 In 2022, our group contributed one more example 
adopting cationic iridium catalyst to facilitate the deconjugative chain-walking C–H functionalization of 
substances with an imine directing group (Figure 1).4 
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Figure 1. Imine directed C–H activation along with chain-walking. 

In contrast to the previous work, we here demonstrate that branched product can be obtained 
using a carbamoyl directing group (Figure 2). Fine tuning of the aniline moiety and ligand realized 
excellent yield and excellent regioselectivity. A wide substrate scope is available with high functional 
group tolerance including pharmacophore and biologically active scaffold. We will discuss the 
mechanistic studies in the presentation. 
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Figure 2. Branch-selective C–H hydroarylation to internal alkenes along with chain-walking. 
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Because of unique optical, electronical, and physical properties, benzophosphole derivatives have 
attracted much attention in the field of organic functional materials.  Accordingly, the development of 
synthetic strategies for the preparation of benzophospholes, particularly, multiply substituted ones, 
has been one of the long-standing research subjects in synthetic community.1  On the other hand, 
transition-metal-promoted C–H activation has been proven to be one of the most powerful strategies 
in the conversion of simple starting materials to the diverse and value-added molecules.  Among 
them, the C–H transformations of benzoheteroles such as indoles, benzothiophenes, and 
benzofurans, have received tremendous attention and have made remarkable progress.2  However, 
the direct catalytic C–H transformation of phosphorus analogues, benzophospholes, has not been 
successful so far.  Here, we present Pd-catalyzed C–H arylation,3 alkenylation,4 and alkynylation of 
the phosphole nucleus.  Additionally, related direct functionalizations under visible light irradiation will 
also be disclosed (Scheme 1). 
 

 
 

Scheme 1. Direct C–H transformations of phospholes. 
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The straightforward and rapid incorporation of a thiazolidinedione scaffold into prefunctionalized 
(hetero)aromatic compounds is in demand for the development of antidiabetic glitazones and other 
pharmaceuticals. Herein, we report the unprecedented N- and O-directed C−H alkylation of various 
(hetero)arenes with methylene thiazolidinediones under rhodium(III) catalysis. The applicability of the 
developed protocol in challenging contexts is exhibited by the late-stage installation of a methylene 
thiazolidinedione moiety on the C−H bond of commercially available drug molecules. 
 
The selective modulation of peroxisome proliferatoractivated receptor γ (PPAR-γ) is one of the central 
topics for the treatment of type 2 diabetes. In particular, a thiazolidine-2,4-dione (TZD) scaffold on 
glitazones plays a crucial role in selective receptor binding, hence leading to the stimulation of PPAR-
γ.1 A common structural feature of PPAR-γ agonists is the Ar-CH2-TZD group. The conventional 
approach for generating this framework relies on the aldol condensation between nucleophilic TZD 
and aryl aldehydes followed by olefin hydrogenation. However, from the viewpoint of medicinal 
chemistry and drug development, this strategy presents intrinsic drawbacks, namely, the need for 
prefunctionalized aldehydes and functional group instability under hydrogenation conditions, which 
lead to the limited generation of synthetic derivatives. Therefore, the a new methodology for 
synthesizing the Ar-CH2-TZD backbone with fewer synthetic steps is in demand. Herein, we first 
demonstrate the utility of methylene TZD in the C−H functionalization of various (hetero)arenes, 
affording (Het)Ar-CH2-TZD. Notably, this protocol provides a valuable opportunity to rapidly access 
the drug candidates via PPAR-γ modulation (Figure 1).2 Moreover, the late-stage installation of the 
CH2-TZD moiety into complex drug molecules can be an alternative way to afford synergistic and 
complementary effects of two pharmacological groups in a single molecule. 
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Figure 1. Catalytic approach into Glitazone scaffold and late-stage C–H functionalization 
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Over 100 years ago in 1917,1 Wilhelm Schlenk and Johanna Holtz reported on their seminal work 
“Über die einfachsten metallorganischen Verbindungen” comprising a series of organosodium 
compounds but also methyllithium, ethyllithium, n-propyllithium, and phenyllithium. These 
organolithium reagents (RLi) display key components in organic and organometallic chemistry alike.2 
Moreover, both academic and industrial interests draw upon the versatility and efficiency of these 
universal reagents which can act as nucleophiles, bases3 or reducing agents,4 but they can also act 
as polymerization initiators (elastomer sector).5 However, commercially available stock solutions of 
organolithium reagents are inherently contaminated with lithium halide salts (up to 10%) originating 
from their syntheses, which can complicate certain synthesis protocols and purification processes. 
Here, we report the isolation of chloride-free methyllithium employing K[N(SiMe3)2] as a halide-
trapping reagent (Figure 1). The influence of distinct LiCl contaminations on the 7Li-NMR chemical 
shift is examined and their quantification is demonstrated. The structural parameters of new chloride-
free monomeric methyllithium complex [(Me3TACN)LiCH3], ligated by an azacrown ether, are 
assessed by comparison with a halide-contaminated variant and monomeric lithium chloride 
[(Me3TACN)LiCl], further emphasizing the great effects of halide impurities.  
 

 

 
 

Figure 1. Isolation of pure methyllithium. MeLi-c=contaminated methyllithium. 
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Saturated N-heterocycles are prominent motifs found in various natural products and 
pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of 
saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present an one-pot 
protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through 
a cascade reaction.  
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Transition metal-catalyzed cycloaddition reactions have become particularly successful examples for 
high versatile and atom-efficient transformations with [2+2+2] cycloaddition reactions as a particular 
versatile representative. This reaction stands out as a large number of transition metals are capable 
to mediate or catalyze this reaction.1 The late metals of the first row of the transition metals have 
been among the first, from which successful examples of catalytic cyclotrimerizations have been 
reported.2 These metals, especially nickel and cobalt, exhibit interesting and unique catalytic features 
compared to the heavier congeners. Most recently our studies led to the discovery of a Co(II)-based 
catalytic process for the synthesis of phosphinines from diynes and phosphaalkynes, featuring a large 
substrate scope including even tolerance to nitrile groups in the substrates.3 While our interest is 
focusing on developing new catalysts and exploiting different oxidation states, we are also interested 
in discovering the catalytic features of other 3d metals like iron and especially manganese. Except for 
a few (formal) examples, manganese complexes were not known to catalyze cyclotrimerization 
reactions so far, although the Cp (cyclopentadienyl) and CO complexes share structural similarities to 
those of cobalt. The presentation will discuss the development of novel manganese catalysts for 
[2+2+2] cycloadditions, their catalytic features and scope of substrates, including a comparison to 
cobalt-catalyzed transformations and reaction mechanisms, and their evolution to master new 
substrate challenges.  
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Figure 1. Novel cyclotrimerizations by manganese and cobalt catalysts. 
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Metal-catalysed cross-couplings are powerful tools for the synthesis of a diverse range of 
agrochemicals and pharmaceuticals. Despite significant advances achieved in this area, most of 
these reactions are carried in a presence of insoluble inorganic bases or metal alkoxides, which leads 
to heterogeneous reaction mixtures and ‘clumping’ of the base during reactions.1,2 This in turn leads 
to reproducibility issues, problematic sampling, poor isolated yields, and safety hazards associated 
with microwave heating. Furthermore, reaction heterogeneity results in poor scalability, an issue that 
is especially acute when High Throughput Experimentation (HTE) screens are translated to the 
synthetic laboratory. Recently, these issues have been addressed in C-N3 and C-S4 couplings by 
using milder, soluble organic base. However, the equivalent procedure for Pd-catalysed C-O cross-
couplings is currently unknown. 
 
We have developed the first Pd-catalysed O-arylation of phenols with aryl triflates that uses a soluble 
organic base. The methodology tolerates a broad range of sterically and electronically diverse 
coupling partners and is compatible with both microwave heating and HTE formats. We anticipate that 
this methodology will prove to be a useful tool in both academic and industrial discovery programmes. 

 
 

Figure 1. Soluble-base-assisted O-arylation. 
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Homogeneous metal catalysis has revolutionized modern organic synthesis. Traditionally, the 
vast majority of reported methods have focused on closed-shell two-electron processes 
involving mononuclear species, e.g. Pd(0)/Pd(II) cycles, while processes involving dimeric 
metal complexes in rather unusual oxidation states like Pd(I) have – by comparison – 
received much less attention.1 This presentation will discuss dinuclear as well as odd 
oxidation state metal catalysis to address important challenges in synthesis with particular 
emphasis on selectivity, mildness and speed.2 Examples of privileged reactivity of the M(I) 
species will be showcased also and range from fully predictable, sequential functionalization 
of poly(pseudo)halogenated arenes to modular and iterative synthesis to  vinyl 
cyclopropanes and more. 

 
 

 
 

Figure 1. Application of dinuclear M(I)-M(I) scaffolds as diverse (pre)catalysts in 
mononuclear, dinuclear and metalloradical catalysis. 
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Sodium dependent glucose transporter 2 (SGLT2) inhibitors 1 have received keen att

ention as a diabetes drug due to high efficacy and safety.1  Recent discoveries on addition
al potency of those drugs for nephritis and heart failure have enhanced the importance as 
a therapeutic agent significantly.2  SGLT2 inhibitors have b-C-glycoside motif as a commo
n structure where sugar unit is combined with aromatic substituent by b-orientation.3  Prev
ious synthetic methods have a serious issue of need of cryogenic conditions (-78 oC) to in
stall the characteristic structure itself.  To address the drawback, we have developed new 
synthesis which can be undertaken at ambient temperature for the key step.4 The method 
consists of a new ketone synthesis from 2 to 3 through Fukuyama coupling reaction.  The 
mild conditions enable use of labile acetyl protecting group. 
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Sugar alcohols are of great importance to the food industry and are promising building blocks for bio-
based polymers. Industrially, they are produced by heterogeneous hydrogenation of sugars with H2, 
usually with none to low stereoselectivity. Now, we present a homogeneous system based on 
commercially available components, which not only increases the overall yield, but also allows a wide 
range of unprotected ketoses to be diastereoselectively hydrogenated.[1] Furthermore, the system is 
reliable on a multi-gram scale allowing sugar alcohols to be isolated in large quantities at high atom 
economy. 
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Figure 1. Diastereoselective, ruthenium-catalyzed hydrogenation of ketohexoses to the 
corresponding sugar alcohols with chirality transfer from the corresponding DTBM-

SEGPHOS ligand. 
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Acyl fluorides are a class of compounds containing a carbonyl–fluorine bond.  They are more stable 
than other acyl halides, but more reactive than the corresponding esters and amides.  This moderate 
reactivity has recently attracted attention and opened up new fields to utilize acyl fluorides as easy-to-
handle electrophiles.1,2  Another synthetically useful feature is two possible reaction modes: acyl 
coupling (RCOF as the RCO source) and decarbonylative coupling (RCOF as the R source).  Late 
transition metal catalysts are especially suitable for controlling selectivity and expanding the variation 
of transformations. 
Following our report on the alkylation of acyl fluorides with organoboron reagents,3 we this time 
disclose the nickel-catalyzed cross-electrophile coupling between aroyl fluorides and alkyl bromides 
(Figure 1).4  The reaction conditions using zinc as the reductant constructed C(sp2)–C(sp3) bonds with 
a relatively broad functional-group tolerance.  Furthermore, investigation of the reaction mechanism 
revealed that the present reaction proceeds via the radical pathway.  This reaction protocol bypasses 
prior preparation of organoboron compounds for classical cross-coupling, leading to efficient 
production of alkylarenes. 
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Figure 1. Nickel-Catalyzed Decarbonylative Reductive Alkylation of Acyl Fluorides with Alkyl 

Bromides. 
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The site-selective incorporation of trifluoromethyl group into biologically active molecules and 
pharmaceuticals has emerged as a central topic in medicinal chemistry and drug discovery. 
Tremendous progress has been made on the direct incorporation of a CF3 group into a series of 
organic molecules by using trifluoromethylating agents reported by Ruppert-Praksch, Togni, 
Umemoto, Langlois, and MacMillan1 (Figure 1a). Recently, β-CF3-α,β-unsaturated ketones have been 
also employed in the catalytic C−H functionalizations. For example, Yu and co-workers reported the 
pyridinyl-directed Rh(III)-catalyzed C−H alkylation reaction of aromatic and vinylic C−H bonds with β-
CF3-substituted unsaturated ketones2 (Figure 1b). Herein, we demonstrate the rhodium(III)-catalyzed 
conjugate addition of β-trifluoromethylated enones with quinoline N-oxides, which result in the 
generation of β-trifluoromethyl-β’-quinolinated ketones (Figure 1c). The reaction proceeds under mild 
conditions with complete functional group tolerance. The synthetic applicability was showcased by 
successful gram-scale experiments and valuable synthetic transformations of coupling products. 
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Figure 1. C8-Alkylation of quinoline N-oxides using β-CF3-enones 
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Diaryl ethers are found in a variety of natural products and pharmaceuticals. Popular ancillary ligands 
have enabled efficient routes to this motif using homogeneous Pd catalysis,1 and while Cu-mediated 
methods (e.g., Chan-Evans-Lam,2 along with more recently reported catalytic methods3) are also 
effective, they are typically unable to accommodate the use of inexpensive and commercially 
available (hetero)aryl chlorides. Ni has emerged as a promising alternative to these metals, but while 
ligand design and photoredox catalysis alike have enabled recent strides in Ni-catalyzed C-O cross-
coupling,4 these limitations in terms of electrophile scope remain present (Figure 1). Herein, we 
present a method for the synthesis of unsymmetrical (hetero)diaryl ethers from chloropyridine-type 
electrophiles and substituted phenols using PhPAd-DalPhos and Ni(cod)2 as a catalyst system under 
thermal conditions.5 Optimization of this system will be presented, along with the useful substrate 
scope and reactivity preferences as determined through competition experiments. 
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Figure 1. Ni-catalyzed synthesis of (hetero)diaryl ethers enabled by the ancillary ligand 

PhPAd-DalPhos. 
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Direct allylic C-H amination of alkenes allows for the regioselective formation of a new C-N bond, 
making it an efficient method for introducing new functionality. As such, this transformation can be 
valuable is functionalizing feedstock, derivatizing compounds, or within synthetic routes. We have 
developed a metal-free allylic C-H amination method catalyzed by selenium complexes of phosphines 
and N-heterocyclic carbenes. A variety of electron-poor nitrogen sources such as sulfonamides, 
sulfamates, and carbamates can be installed using these methods, with unique regioselectivity and 
no allylic transposition1. This regioselectivity can depend on subtle electronic factors. Direct 
installation of more basic alkylamino and -NH2 groups allows subsequent functionalization and/or 
deprotection steps to be bypassed, providing more efficient access to these derivatives compared to 
prior established methods.  
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Homogeneous catalytic carbonylation reactions performed in the presence of various nucleophiles 
are excellent synthetic tools for the production of valuable fine chemicals, such like amides, esters, 
thioesters. Several studies have been reported for the utilization of simple amines and alcohols as 
model reactants, only a few works focused on the investigation of carbonylation reactions in the 
presence of homo- and even heterobifunctional nucleophiles. However, the application of the latter 
open alternative and easier synthetic routes for the construction of complex molecular structures. 
Our investigation was focused on the selective transformation of iodoarenes with various 
aminoethanols to get the corresponding amides or amide-ester derivatives. It was showed, that the 
substrate-nucleophile ratio and the base have crucial role on product distribution. Furthermore, 
interesting correlation was found between the substituents of the aryl iodides and the rate of 
amino/alkoxy-carbonylation reactions. Additionally, trifunctional nucleophiles were also tested with 
various iodobenzene amounts. Surprising results showed increased affinity on ‘tricarbonylated’ 
products, which phenomena were explained by mechanistic considerations. 
Additionally, some selected aminoethanols were reacted with ortho-dihalogenated aromatic 
substrates under carbonylation conditions. Iodo- and bromo-aromatic structures showed diverse 
reactivity and selectivity with the selected heterobifunctional nucleophiles. As it was expected, 
iodobenzenes and amines were much more reactive compared to bromo analogues and O-
nucleophiles, but latter structural items are also suitable coupling partners and showed interesting 
behaviour under the applied conditions. 
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Figure 1. Carbonylation reaction of aryl halides in the presence of bifunctional N,O-
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Chiral pyrrolidine scaffolds are frequently found in natural products and biologically active 
compounds. Paying attention to the relative configuration of these pyrrolidine derivatives, it has been 
known that not only 2,5-cis-substituted ones but also 2,5-trans substituted ones are used.[1] 
Therefore, a reliable method for efficient preparation of stereochemical divergent pyrrolidine 
derivatives is desired in drug discovery.  

Metal complex-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with electron-
deficient olefins is one of the most efficient synthetic methods for the preparation of the scaffolds and 
many efforts have been made to develop synthetic methods to construct these scaffolds.[2] However, 
this method usually affords 2,5-cis configuration such as endo- or exo-cycloadducts, and 2,5-trans 
configuration such as endo´- or exo´-cycloadducts are rarely obtained. In 2010, the first exo´-selective 
symmetric [3+2] cycloaddition, catalyzed by a chiral nickel complex, was reported by Arai and co-
workers.[3a] This pioneering work suggested that exo´-diastereoselectivity was expressed by a 
stepwise Michael addition/Mannich pathway with bond rotation instead of a concerted 1,3-dipolar 
cycloaddition process. On the other hand, we have revealed that the 2,5-trans diastereoselectivity 
can be also expressed in the construction of spirocyclic pyrrolidines using ylidene-heterocycles as 
electron-deficient olefins. For example, we previously reported that silver complex-catalyzed exo´-
selective asymmetric [3+2] cycloaddition of iminoesters with ylidene-2,3-dioxopyrrolidines.[3b] 

In this work, we report the silver complex-catalyzed endo´-selective asymmetric [3+2] cycloaddition 
of iminolactones with ylidene-isoxazolones[4a], which efficiently afforded chiral spiro pyrrolidine 
scaffolds with excellent endo´-diastereoselectivity and high enantioselectivity. In particular, the 
isoxazolone moiety of the cycloadduct can be converted to ketone without loss of enantiomeric 
excess by the reduction of the N-O bond.[4b,c] 
 

 
 

Scheme 1. The present work 
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Remote functionalization of alkenes has attracted much attention since it enables transformations 
which would be otherwise difficult to achieve. On the other hand, it is still challenging to develop 
remote difunctionalizations, catalytic reactions to form bonds at both the alkene moiety as well as a 
remote position.[1] Our group has developed catalytic organic synthesis taking advantage of chain 
walking such as the palladium-catalyzed hydrosilylation/cyclization of 1,n-dienes with hydrosilanes.[2] 
In contrast, there have been scarce reports on remote difunctionalization involving a synthetically-
useful C–B bond formation.[3]  
Here we report palladium-catalyzed remote hydroboration/cyclization of 1,n-dienes (n = 7-9) with 
hydroboranes via chain walking (eq. 1).[4] In addition, we found that diborons could introduce further 
boryl group at the terminal position of the other alkyl chain and thus achieved remote diborylative 
cyclization of 1,n-dienes (n = 6-9) via chain walking (eq. 2).[5] Further transformation of the two boryl 
scaffolds enabled formal remote difunctionalization reactions which have been not achieved with the 
previous difunctionalization methods. Mechanistic studies implied that a key process in the reaction, 
conversion of a remote unactivated C(sp3)–H bond to a C(sp3)–B bond, proceeds via formal sigma 
bond metathesis between an alkylpalladium species and a diboron reagent.   
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Figure 1. Palladium-catalyzed remote borylative cyclization of 1,n-dienes via chain walking. 
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The development of new reactions and catalysts for the oxidative cross-coupling of C-H bonds with C-
H, N-H and O-H bonds will be discussed. Strategically, these reactions allow for the synthesis of 
complex molecules from their constituent components, minimizing the need for functional group 
activation and manipulation. A novel planar chiral catalyst platform for enantioselective reactions will 
be presented. Illustrative examples of emergent applications will be provided.  
 

 
 

Figure 1. Illustrative enantioselective C-H amidation. 
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Dearomatization is an effective method to transform readily available N-heterocycles into partially 
saturated motifs. Manipulation of dihydro-derivatives holds great potential and provides access to a 
variety of semi-saturated N-heterocyclic building blocks. However, current strategies are limited in 
scope and the use of sensitive reagents restricts the applicability in synthetic laboratories. Herein, we 
report the synthesis of a broad variety of N-substituted 1,4- and 1,2-dihydropyridines by very mild and 
selective reduction with amine borane for the first time. 
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Construction of a vinylene structure through C–H/C–H coupling provides straightforward 
synthetic access to functional π-conjugated organic molecules.1 The palladium-catalyzed oxidative C–
H alkenylation between an arene and an olefin, or Fujiwara–Moritani (FM) coupling presents one of 
the earliest examples.2 However, the FM reaction is not applicable to electron-rich alkenes because 
of the difficulty in the carbometallation step and the undesired oxidation of electron-rich alkenes 
leading to decomposition and oligomerization. We report herein iron-catalyzed oxidative C–H 
alkenylation between thiophenes and enamines and its application to copolymerization of 
bisthiophene and bisenamine monomers using Fe(III) as an iron source, conjugated trisphosphine3 as 
a ligand, AlMe3 as a base, and diethyl oxalate as an oxidant. The C–H bond next to the sulfur atom of 
the thiophene and the terminal position of the enamine reacted with excellent regio-, linear, and E 
selectivity. The reaction includes C–H activation of thiophene via σ-bond metathesis and subsequent 
enamine C–H cleavage triggered by nucleophilic enamine addition to the Fe(III) center, thereby 
differing from the FM reaction in mechanism and synthetic scope (Figure 1). The copolymers 
synthesized by the new reaction possess a new type of enamine-incorporated polymer backbone. 
 

 
 

Figure 1. Oxidative C–H alkenylation of thiophenes with enamines enabled by 
Fe(III)/trisphosphine/AlMe3/oxalate catalysis.4 
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Transition metal-catalyzed transformation initiated by C–H activation is fascinating in organic 
synthesis, because it can realized atom- and step-economical protocols. We comprehensively studied 
cationic Ir-catalyzed reactions using various heteroatom-containing substrates. We here disclose our 
recent results using nitrogen- or sulfur-containing directing group. 

The synthetic methods of regioselective C–H functionalization of indole are strongly desired. We 
have focused on Ir-catalyzed C–H activation of the C2 position. When amide group was used as a 
directing group, highly enantioselective C–H alkylation was achieved by using functionalized alkene 
via formal C–H conjugate addition (Eq 1).1 In contrast, when imino group was used, consecutive 
double bond isomerization (i.e., chain walking) proceeded, and the C–C bond formed at the terminal 
position of the alkyl chain, which means that remote functionalization is possible (Eq. 2).2 

  
Examples of sulfide-directed C–H activation is limited, because the sulfide moiety often acts as a 

poison in transition metal catalysis. We realized Ir-catalyzed sp2 C–H activation of 2-alkynyl diaryl 
thioether (Eq. 3).3 The intramolecular reaction provides three types of sulfur-containing multicyclic 
compounds with 5, 6, and 7-membered system, respectively, by the choice of substituent and 
reaction temperature. We will demonstrate sulfide-directed sp3 C-H activation in the presentation. 
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The first successful example of a catalytic enantioselective intramolecular Tishchenko 
reaction of a meso-dialdehyde 2 in the presence of a chiral iridium complex 1 is described. Chiral 
lactone 3 was obtained in good yields with up to 91% ee (Scheme 1).1 To compare the 
enantioselective intramolecular Tishchenko reaction with the enantioselective oxidative lactonization, 
the corresponding diol was treated with the same catalyst in the presence of acetone as an oxidant, 
to afford the desired lactone in 92% yield and 79% ee with the opposite configuration. The obtained 
enantioenriched lactones were successfully converted to (S)-cedarmycins A and B.  

In the context of asymmetric synthesis, epimerization is usually problematic. We report the 
use of the epimerization of cis-2,3-bis(hydroxymethyl)-γ-butyrolactone which is obtained from 3 for the 
synthesis of enterolactones with anti-carcinogenic, anti-inflammatory, anti-angiogenic, and antioxidant 
activity. Selective α- or β-epimerization of a γ-butyrolactone was used for the enantiodivergent 
synthesis of enterolactone.2 Theoretical and kinetic studies were performed to elucidate the 
epimerization mechanism. 
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Scheme 1. Catalytic enantioselective intramolecular Tishchenko reaction of meso-dialdehyde 

2. 
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Alkenylboron compounds with defined regio- and stereochemistry are indispensable reagents in 
chemical synthesis, because they are efficiently convertible into invaluable multisubstituted alkenes 
with controlled geometry through carbon–carbon bond-forming processes including Suzuki–Miyaura 
coupling (SMC). Copper-catalyzed three-component hydroboration of alkynes with a diboron in the 
presence of an alcohol has been one of the most convenient and reliable methods for synthesizing 
alkenylboron compounds, whose regiochemistry is determined in addition step of a borylcopper 
species across a triple bond (borylcupration). In general, attachment of a boron functionality to a more 
substituted carbon of terminal alkynes via internal-selective borylcupration is challenging, since an 
inherently Lewis acidic boron moiety, in principle, favors the attachment to a terminal carbon (entry 1). 
On the other hand, we have already disclosed that internal-selective borylcupration is feasible by 
using Cu–B(dan) (dan = naphthalene-1,8-diaminato) of diminished boron-Lewis acidity (entry 2). 
However, the resulting alkenyl–B(dan) bonds cannot directly be utilized for SMC under standard 
conditions,1 because the strongly diminished Lewis acidity of the B(dan) moiety retards 
transmetalation step. Thus, development of a new boron moiety that can compatibly achieve the 
internal-selectivity and the SMC activity is of urgent importance.  

When we carried out the reaction of 1-octyne with (pin)B–B(aam) (aam = anthranilamidato) in the 
presence of methanol and SIPrCuCl (%Vbur = 50.1), internal-selective borylcupration occurred to give 
B(aam)-containing products in 91% yield (b:l = 89:11) (entry 3). These results strongly imply that the 
boron-Lewis acidity diminishment is the key 
to achieving the internal-selectivity, and 
furthermore the regioselectivity in the 
borylcupration correlates closely with the 
degree of the diminishment, which can be 
qualitatively determined by theoretical 
calculation-based AA (Ammonia Affinity).2 In 
addition, the reaction with bulkier 
6DippCuCl(%Vbur = 53.1) led to the perfect 
internal selectivity to furnish the branched 
alkenyl–B(aam) in 96% yield (entry 4).  

In conclusion, we have disclosed that the 
key factors governing internal-selective 
borylcupration of terminal alkynes are 
“diminishment of boron-Lewis acidity” and 
“ligand (NHC)-derived steric bulk around a 
copper center”.3 
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Controlled construction of congested stereogenic centers within acyclic systems represents 
an acute challenge in stereoselective organic synthesis. The main obstacle is the 
conformational flexibility of these organic frameworks compared to cyclic systems. An 
elegant solution to this problem involves introduction of stereocenters to cyclopropanes as 
highly strained carbocycles and subsequent selective ring opening.1 
Previously, we reported synthesis and 1,2-metalate rearrangement-mediated ring opening of 
polysubstituted borylated cyclopropanes by various alkyl-, aryl- and alkynyllithium reagents.2 
Here, we present a selective metal-halogen exchange-mediated ring fragmentation of 
cyclopropyl pinacolboranes exploiting the anion-stabilizing effect of the boronic ester moiety. 
This umpolung strategy represents an original approach to boron-stabilized carbanions. 
Subsequent reaction of these species with electrophiles provides various acyclic frameworks 
with high levels of diastereoselectivity.  

 
 

 
Scheme 1. 
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We recently reported that the atropo-
enantioselective ring-opening reactions 
of biaryl lactones were drastically 
enhanced without any loss of the 
enantioselectivity under microwave 
irradiation conditions with strict 
temperature control [1]. It was also 
observed that the racemization rate of 
the optically pure biaryl lactones was 
accelerated by microwave irradiation; at 
25 °C, the half-life racemization time was 
2.4 days, whereas with microwave 
irradiation, it was 1.6 days [2]. Catalytic 
enantioselective Claisen rearrangement 
was drastically enhanced under 
microwave irradiation conditions without 
any loss of the enantioselectivity (Table 1). Based on Arrhenius plots it was revealed that 
enantioselectivity decreased as the internal reaction temperature increased. Therefore, this reaction 
acceleration would NOT be caused by only a simple thermal effect [3]. 
A copper-catalyzed Nazarov 
cyclization using an aryl vinyl 
ketone derivative containing 1,3-
dicarbonyl moiety was carried out 
under microwave irradiation 
conditions. The Nazarov cyclization 
was dramatically accelerated and 
the kinetic rate of the microwave 
irradiation was 5.8 times faster than 
that by conventional heating 
conditions (Table 2). When the 
asymmetric Nazarov cyclization was 
conducted using a chiral copper 
catalyst, the Nazarov reaction was 
subsequently enhanced by the 
microwave irradiation without any loss of the enantioselectivity. It is suggested that the drastic 
enhancement with the retention of the enantioselectivity was caused NOT by simple thermal effect, but by 
a microwave-specific effect on the enantioselective reaction [4]. 
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Oxygen-containing heterocycles, such as xanthone and chromone, represent key structural 
units in many natural products and important pharmaceuticals compounds. They are also 
utilized as useful building blocks in synthetic chemistry.[1] As a consequence, the construction 
of polycyclic skeletons containing chromones and xanthones has continually attracted 
significant attention from synthetic chemists. 
The novel Pd-catalyzed controllable regio- and chemoselective cascade approaches to 
synthesize 4H-furo[3,2-c]chromene and xanthone were developed. The rare examples of 
cascade approaches involving the intramolecular cyclization and cross-coupling reactions of 
2-benzyl-3-alkynyl chromones with aryl iodides. Pd-catalyzed two modes of O- and C-
nucleophilic cyclization and difunctionalization of alkynes is the key step for the cascade 
reactions, it could be controlled by the addition of KF or bidentate phosphine. In addition, a 
one-pot cascade process from γ-alkynyl-1,3-diketone was also developed through multiple 
cyclizations and cross-coupling reaction.[2] 
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Due to the importance of nitrogen-containing molecules as medicinal targets and useful synthetic 
intermediates, development of reactions that introduce multiple C-N bonds in a single transformation 
remains a significant and important challenge in catalysis. We have developed a new catalytic 1,2-
diamination of 1,3-dienes catalyzed by phosphine selenides, based partly on a stoichiometric 
diamination reported by Sharpless in 1974.1 This original work was limited in substrate scope and 
reported low yields The product of a 1,2 diamination of 1,3 dienes is unique in that it contains two 
novel carbon-nitrogen bonds produced in one catalytic cycle. Though difunctionalization reactions of 
dienes can sometimes suffer from challenges in controlling regioselectivity, this new diamination is 
highly selective for a single 1,2-addition product. We propose that this regioselectivity is due to the 
unique mechanism of our selenium-catalyzed reaction. Generation of a selenium bis(imide) is 
followed by a [4+2] cycloaddition with the diene to afford a seleno-bicyclic species and the first new 
carbon-nitrogen bond. Next, [2,3] sigmatropic rearrangement forms the second carbon nitrogen bond, 
and subsequent oxidative turnover and aminolysis generates the diaminated product. The catalytic 
reaction conditions employ (diacetoxyiodo)benzene (PhI(OAc)2) as a cheap and commercially 
available oxidant, trifluoroethylsulfamate (NH2Tfes) as the nitrogen source, and a bulky phosphine 
selenide catalyst.2 The use of NH2Tfes as a protecting group on the nitrogen allows for facile 
deprotection. This reaction is effective with a variety of different 1,3-dienes, including linear and cyclic 
dienes, and is tolerant of a variety of functional groups.  
 

 
Figure 1. Proposed catalytic cycle 
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The development of methodology to conveniently access small molecules provides a reliable 
tool to synthetic chemists pursuing increasingly complex targets while concomitantly 
decreasing synthetic difficulty and cost. The thorough investigation, typically involved in 
developing a general transformation, adds to our understanding of the interplay between 
chemical space and mechanism. Such insights will inform and inspire future innovations or 
applications.  
 
Enantioselective Rh-catalyzed 
conjugate arylations have been 
well studied and applied.1 The 
vinylogous variants have seen 
less use, but typically result in 
additions to the δ-position2 
unless large terminal R-groups 
or directing groups are applied 
(Figure 1A).3 
 
This presentation will discuss a 
methodological campaign 
wherein we redirect this 
apparent δ-selectivity with a 
Rh-catalyzed β-regio- and 
enantioselective arylation of 
E,Z-dienes with the dominant 
controlling factor being the 
alkene geometry at the γ,δ-
moiety (Figure 1B). Reaction 
development, scope, and mechanistic studies probing the subtle origins of reaction selectivity 
will be the focus of the material presented. The developed conditions provide an extension to 
the well-established reaction manifold. The novel substrate class highlights the significance 
of mild conditions on reactions with geometrically-defined products and starting materials. 
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Sulfinate esters are used in organic chemistry as synthetic intermediates1 and in bioimaging.2 
Methods to make them are rare, and involve harsh reaction conditions and/or long reaction 
times.3,4,5 The similar sulfinamide functional group is widely used as a synthetic intermediate6 
and as a catalyst.1,7 Traditional synthetic methods often require starting from pre-installed 
sulfur-containing functional groups.8,9 A recent report for the syntheses of sulfinamides allows 
late-stage installation of sulfur,10 but does not facilitate access to sulfinate esters. We have 
developed a rapid, mild method for the syntheses of sulfinate esters, that is also applicable to 
sulfinamides, filling this gap in the literature. 
 
The Sammis group has recently shown that sulfur(IV) fluoride reagents are useful for forming 
a variety of substrates.11,12 Our powerful one-pot method for sulfinate ester and sulfinamide 
synthesis uses thionyl fluoride (SOF2) to form a sulfur(IV) fluoride intermediate from an 
alcohol or an amine. This is then treated with an organozinc carbon nucleophile to form the 
desired product. The reactions are fast, work under mild conditions, and are applicable to a 
variety of substrates. 
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Figure 1. Syntheses of sulfinate esters and sulfinamides 
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P-stereogenic compounds are widely used as ligands in asymmetric catalysis1, and present in a 
myriad of bioactive compounds and pharmaceuticals2. Yet, their stereocontrolled preparation remains 
challenging3. Herein, we report a novel strategy towards versatile chiral-at-P 
alkenylphosphonamidates through a one-pot Ni-catalyzed C-P coupling/diastereoselective hydrolysis 
of readily available phosphoramidites and alkenyl halides. Remarkably, a diastereo- and 
chemodivergent behavior was observed upon subtle changes in the reaction conditions. Additionally, 
selective derivatizations of chiral alkenylphosphonamidates demonstrate their utility as building blocks 
for the synthesis of structurally diverse P-stereogenic compounds (Figure 1). 
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Figure 1. Strategy for the generation for chiral P- chiral alkenylphosphonamidates 
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We recently developed the catalytic monoarylation and polyarylation of cyclic vinylogous esters.1,2 
The deprotonative arylation reactions take place at the relatively acidic α and/or γ’ carbons of cyclic 
vinylogous esters (Figure 1). Significantly, the regioselectivity of these processes could be well 
controlled under customized conditions. Overall, this collection of arylation reactions have offered a 
unique opportunity in rapidly assembling a variety of functionalized aryl-containing scaffolds. 
 

 

 
 

Figure 1. Arylation Reactions of Cyclic Vinylogous Esters. 
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Transition-metal-catalyzed direct C–H functionalizations have become powerful synthetic tools, and 
especially, those using earth-abundant metal catalysts have emerged as resource-economical 
methods for efficient formation of C–C and C–heteroatom bonds.[1] Iron, the most abundant transition 
metal, has been one of the metals widely studied as active sites of C–H functionalization catalysts. 
Our group previously reported Fe(PMe3)4-catalyzed C–H/olefin coupling reaction of aromatic ketones 
and C–H homoallylation with methylenecyclopropanes.[2,3] 

Here we report the Fe(PMe3)4-catalyzed reaction of pivalophenone derivatives with internal alkynes 
proceeds to provide C–H alkenylation products and the use of a catalytic amount of PtBu3 as an 
additive improves the product yields (Figure 1).[4] The alkenylation proceeded selectively to give a 
single regio- and stereoisomer in all cases. For example, when the reaction of p-
trifluoromethylpivalophenone with 1.1 equiv of 1-phenyl-2-(triethylsilyl)acetylene was carried out using 
10 mol % Fe(PMe3)4 and 33 mol % PtBu3 in THF at 80 °C for 48 h, the alkenylation proceeded regio- 
and stereoselectively to give the corresponding alkenylation product in 95% yield. 

The C–H alkenylation is considered to proceed via coordination of the alkyne to the Fe center, 
oxidative addition of the ortho C–H bond of the ketone, 1,2-insertion of the alkyne into the Fe–H bond, 
and reductive elimination. 31P{1H} NMR experiments suggested that the iron-alkyne intermediate is 
the resting state. PtBu3 may donate electrons to the iron center of the iron-alkyne intermediate to 
facilitate the oxidative addition of the ortho C–H bond of the ketone.  
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Figure 1. Iron-catalyzed C–H alkenylation using internal alkynes  
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Haloarenes are among the most privileged chemicals in modern organic chemistry field. The versatile 
applications of aryl halides in pharmaceuticals, material science, and metal-catalyzed coupling 
reactions clearly highlight their importance. The electrophilic aromatic halogenation has been practical 
and straightforward synthetic method to manufacture a wide variety of haloarenes.1 Although classical 
halogenation using molecular halogens (Cl2, Br2, I2) and Lewis/Brønsted acid activators is still a 
promising protocol, it suffers from handling difficulties, low regioselectivity, and limited functional 
group tolerance (Figure 1a). Moreover, the late-stage halogenation of complex molecules has been 
regarded as a challenging task. 
 
Meanwhile, Lewis basic molecules have also been used to catalytically activate halogenating 
reagents by forming halonium complexes (Figure 1b). However, the Lewis base activation is generally 
less powerful than the acid catalysis, and thereby is only effective for the aromatic halogenation of 
electron-rich substrates.2 To overcome this limitation, we began a quest for a suitable structural 
platform for enhancing the reactivity of halonium species and developed new sulfide catalysts (Figure 
1c). To our delight, the developed catalytic system was applicable not only to bromination but also to 
more challenging chlorination and iodination. Potential synthetic applications are demonstrated by 
late-stage halogenation of bioactive compounds and straightforward synthesis of multi-halogenated 
compounds.3 

 

Figure 1. A schematic presentation for the electrophilic aromatic halogenation. 
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1,3-Dipolar cycloaddition of azomethine ylide with activated alkene is the powerful tool for the 

synthesis of pyrrolidine derivatives.1 Acrylic ester and acrylonitrile can be used as good 
dipolarophiles, while 3-substituted α,β-unsaturated esters and nitriles such as cinnamates and 
cinnamonitriles are not allowed as dipolarophiles. Arylidene esters and nitriles sometimes used as 
alternative dipolarophiles of plain unsaturated esters and nitriles, which give 4,4'-diester substituted 
pyrrolidines.2 

α-Phenylsulfonyl cinnamonitrile has been demonstrated as a good Michael acceptor in the 
organocatalyzed conjugated addition.3 The chemo- and stereospecific removal of the sulfone group 
from the chiral quaternary center of the cyanosulfone can afford the corresponding nitrile. 

In this study, we would like to propose α-phenylsulfonyl cinnamonitrile as an alternative dipolarophile 
in 1,3-dipolar cycloaddition of azomethine ylide and stereoselective synthesis of 3-aryl-4-cyano-
substitured pyrrolidines by the removal of the sulfone group. 
 

 
Figure 1 
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Perfluoroalkylated alcohols are useful synthetic building blocks for pharmaceuticals, organic 
electronic materials, and polyelectrolyte membranes, and are generally synthesized by three routes; 
nucleophilic additions of perfluoroalkyl carbanion source such as Ruppert-Prakash reagent to 
carbonyl compounds, reduction of fluoroalkylated ketones, and nucleophilic additions of carbanion 
such as Grignard reagents to fluorinated carbonyl compounds.1 The transition metal catalyzed 
addition of arylboron compounds to carbonyl compounds has garnered attention as a reliable method 
for synthesizing alcohols with various functional groups. While the Rh-catalyzed addition of 
arylboronic acids to perfluoroalkyl ketones has been developed, this catalytic reaction has not been 
adapted to perfluoroalkyl aldehydes due to their instability in air and difficulty in handling.2,3 In this 
study, we have developed palladium catalysts that enable the synthesis of perfluoroalkylated alcohols 
from organoboron compounds and perfluoroacetaldehyde hemiacetals. The results of the arylation of 
trifluoroacetaldehyde methyl hemiacetals, catalyzed by bulky and rigid NHC-coordinated palladium 
complexes were shown in Figure 1.  
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Figure 1. Pd-catalyzed arylation of trifluoroacetaldehyde methyl hemiacetal 
 
Bulky and rigid NHC coordinated cyclometalated palladium complexes, denoted as CH3-IPr*-CYP and 
F-IPr*-CYP, showed excellent catalytic activity for arylation of trifluoroacetaldehyde methyl hemiacetal 
in 0.05 mol% Pd catalyst loading. So, we report the scope and limitations of these catalysts for the 
synthesis of fluorous alcohols. 
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A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The 

formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms.1 

Using density functional theory calculations, we identified BpinBdan as a sterically similar and less 

Lewis acidic alternative to B2pin2. Using a newly developed borylative aldol domino reaction as the 

proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of 

borylating reagent – B2pin2 affords the diastereomer associated with coordination control while 

BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other 

scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the 

reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for 

coordination in future copper-catalyzed borylation reactions. 
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Figure 1. Reagent-controlled, stereodivergent copper-catalyzed borylative difunctionalization 

of π-systems 
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Iridium-catalyzed C–H borylation of aromatic compounds is one of the most efficient methods for 

the direct preparation of aryl boron compounds. However, the conventionally utilized 4,4’-di-tert-butyl-
2,2’-bipyridine (dtbpy) and 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) ligands show low 
reactivity when electron-rich arenes are used as substrates, especially with pinacolborane (HBpin) as 
the borylating agent.1 In this work, we have developed a SpiroBipyridine (SpiroBpy) ligand2 that 
boosts the reactivity of the iridium-catalyzed C–H borylation of electron-rich arenes.3 This method is 
expected to expand the toolbox of this reaction to achieve more diverse applications. 

As shown in Figure 1, when electron-rich arenes such as 1,3-diaminobenzene, 1,3-
dimethoxybenzene, and 1,3-di-tert-butylbenzene were used as the substrate for the iridium-catalyzed 
C–H borylation with HBpin, the borylated products were obtained in high yields by using SpiroBpy as 
the ligand. In contrast, the borylation proceeded in lower yields with the commonly used ligands 
(dtbpy or tmphen) under similar conditions. Various other electron-rich arenes, such as anilines, 
anisoles, alkylbenzenes, etc., were also efficiently borylated by employing our SpiroBpy ligand to 
provide the corresponding borylated products in good to high yields. Notably, the SpiroBpy ligand also 
showed high reactivity in late-stage functionalization of pharmaceutically relevant compounds, such 
as Lidocaine, Phenylalanine derivatives, etc. We postulate that a potential C–H-π interaction between 
the arene substrate and the fluorene backbone, which only exists in SpiroBpy skeleton, may be 
responsible for the acceleration. 

 
 

 
 

Figure 1. 
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The development of a new synthetic strategy for perfluoroalkyl compounds earns attention because 
of their chemical and physical properties. Therefore, various methods for introducing perfluoroalkyl 
groups were invented. Use of fluoroalkyl copper complex is one of the powerful methods. However, 
the introduction method of perfluoroalkyl groups longer than CF3 is limited. Specifically, only a few 
reports demonstrated synthetic pathways for perfluoroalkyl compounds with different functional 
groups on each edge. We have previously reported the synthesis of 1,1,2,2-tetrafluoroethane 
derivatives mediated by the fluoroalkyl copper complex (phen)CuCF2CF2R (R = aryl)1. The complex 
was prepared by pressurizing tetrafluoroethylene to the THF solution of the aryl copper species 
derived from aryl boronic acid ester. 
Herein, we report a homologation reaction of (phen)CuCF2CF2Ph by using TMSCF3 to fabricate new 

perfluoroalkyl compounds having C3 and C4 perfluoroalkyl chain and different functional groups on 
each edge (Fig. 1). This reaction didn’t require any additives such as KF which is often used as an 
activator of TMSCF3

2. The resulting elongated fluoroalkyl copper complex reacts with various coupling 
partners to afford corresponding fluoroalkyl compounds in good to moderate yields. Reactions of 
iodoarenes carrying electron-withdrawing groups, benzyl chloroformate, benzyl bromide, and ethyl 
cis-3-Iodoacrylate proceeds smoothly with the copper complex to afford the purpose compounds. 
Furthermore, C(sp2)−Cl, C(sp2)−Br, and unprotected amino group are tolerated. The one-pot reaction, 
in which a fluoroalkyl copper was used without purification for convenience of experimental 
procedure, afforded the C3 fluoroalkyl compounds in good to moderated yield. Our CF2 insertion 
reaction is believed to proceed via α-fluorine elimination of fluoroalkyl copper complex promoted by 
TMSCF3 acting as a Lewis acid. The selectivity for α- and β-fluorine elimination3 would be controlled 
by the character of Lewis acid.  
 This strategy demonstrates a novel pathway for C3 and longer perfluoroalkyl compounds and 
expands the scope of perfluoroalkyl copper chemistry. 
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Figure 1. Difluorocarbene insertion reaction on a fluoroalkyl copper complex. 
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Trifluoromethylselenyl group (CF3Se) has become an emerging fluorinated moiety in synthetic 
chemistry due to its high Hansch lipophilicity parameter (Hansch–Leo Parameter πR = 1.61) and 
strong electron-withdrawing effect (Hammett constants σm = 0.44, σp = 0.45).1 The 
trifluoromethylselenolation is hampered by limited synthetic methods and related reagents.1 Inspired 
by Procter’s recent work,2 we designed and synthesized the new electrophilic 
trifluoromethylselenolation reagents, trifluoromethyl selenoxides, which are easy to prepare, easy-to-
handle and not moisture or air sensitive (Figure 1a).3,4 The selenoxides are successfully applied into 
metal-free C-H trifluoromethylselenolation of a series of (hetero)arenes and Lewis acid (Tf2O)-
promoted vicinal oxytrifluoromethylselenolation of alkenes with good functional group tolerance 
(Figure 1b and 1c).3 
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Figure 1. Synthesis and Application of Trifluoromethyl Selenoxides. 
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Silyl enol ethers represent stable forms of enolates and are easy to prepare from various carbonyl 
compounds. Because of their electron-rich nature, silyl enol ethers are typically used for nucleophilic 
attack or one-electron oxidation in organic synthesis. In contrast, no transformation of silyl enol ethers 
via one-electron reduction has been reported. Recently we have been working on the development of 
reductive transformations of unsaturated bonds using strong reducing agents such as alkali metals. 
For example, we reported alkali-metal-promoted reductive cleavage of the carbon-oxygen bond of 
propargylic ethers to generate allenylic lithium species1 and vinylic carbamates to generate vinylic 
sodium species.2  
Based on the previous report, we envisioned that silyl enol ethers could undergo reduction by means 
of a strong reductant without degradation of the robust Si−O bond and that the following elimination of 
the siloxide would furnish the corresponding vinylic lithium species which can be trapped by various 
electrophile. As expected, lithium arenides were found to promote the lithiation of silyl enol ethers to 
afford the corresponding allylic alcohols after trapping with carbonyl compounds in high yields. The 
present reaction can generate vinylic lithium species in two steps from the corresponding ketones and 
be regarded as an equivalent of the Shapiro reaction. 
 

 
 

Figure 1. Generation of vinylic lithium species. 
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